• Title/Summary/Keyword: Pressure Distortion

Search Result 161, Processing Time 0.022 seconds

A Comparative Study of Frequency Response Models for Pressure Transmission System (압력전달시스템을 위한 주파수응답모델들의 비교 연구)

  • Kim, Hyeonjun;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • Dynamic pressure transducer needs to be flush-mounted on hardware due to frequency response characteristics of pressure transmission system. However, it is sometimes necessary to be mounted in recessed configuration due to insufficient space for sensor installation and for protection of sensor from thermal damage. Dynamic response characteristics should be considered due to distortion of original dynamic pressure signal in the pressure transmission system. In this study, small perturbation model and 2nd order reduced model were compared with experiments and a guideline for selecting a frequency response model was suggested.

Posture for Distortion Measurement and Analysis Through the Pressure Distribution During a Person Walking (인체보행 시 양발에 가해지는 압력분포를 통한 자세 뒤틀림 측정 및 분석)

  • Hong, Ju-Hee;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.487-492
    • /
    • 2016
  • In this paper, a device for analyzing the pressure distribution during walking was produced by using the pressure sensor on the heel. This device was limited to a frequency band by using the 1st low-pass filter. And an algorithm to analyze the value of the quantity to pressure using a analog to digital converter. It is used by using the threshold voltage of pressure sensor, it is suggested the algorithm. The algorithm is detected the peak which is exceeded the threshold voltage. and thus in accordance, it is detected the number of steps. And the calorie consumption were detected by using it. Also it used an MCU and Bluetooth. And by confirming the data at the LCD of the other MCU, it was to reduce the size of the device. According to this algorithm, it has the advantage that there is no restriction on the activity than when using an imaging device and it is inexpensive than other sensors such as an acceleration sensor or a gyro and it is easy to handle.

Numerical and Experimental Studies on the Fluidic Characteristics and Performance of Liner-type Microtube

  • Kim, Jin Hyun;Woo, Man Ho;Kim, Dong Eok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Purpose: Methods: Three-dimensional CFD modeling was conducted to analyze the flow structure and discharge flow rate corresponding to the variation in the geometry of the flow channel in a microtube. Additionally, experiments were carried out, and the discharge flow rate was measured at various inlet pressures and inclination angles of the microtube. Results: The quantitative data of velocity distribution and discharge flow rate were obtained. As the width and length of the microtip increased, the discharge flow rate decreased significantly because of the increase in the loss of pressure along the microtube. As the depth of the microtip increased, the flow rate also increased because of the reduction in the flow resistance. However, in this analysis, the variation in the angle of the microtip did not influence the flow rate. From the experimental results, it was observed that the flow rate increased linearly with the increase in the inlet pressure, and the effects of the inclination angle were not clearly observed in those test cases. The values of the flow rate obtained from the experiments were significantly lower than that obtained from the CFD analysis. This is because of the distortion of the shape of the flow path inside the microtube during the fabrication process. The distortion of the flow path might decrease the flow cross-sectional area, and it would increase the flow resistance inside the microtube. The variation in the flow rate corresponding to the variation in the inlet pressure showed similar trends. Conclusions: Therefore, the results of the numerical analysis obtained from this study can be efficiently utilized for optimizing the shape of the microtip inside a microtube.

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

Optimum Design of the Screw extruder using Thermo-mechanical Analysis

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.28-33
    • /
    • 2001
  • Screw conveyors are used extensively in industrial for conveying and elevating materials. Despite their apparent simplicity, the mechanics of the conveying action is very complex. so many engineers depend on experiential data. Capacities of screw are pumping, steady flow of polymer melts, steady volumetric throughput etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. by computation volumetric efficiency increases as rotating velocity increases and decreases as friction coefficient increases. also it decreases with short pitch length. and double flight screw is more effective than single flight screw. The temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on volumetric throughput efficiency of the screw and thermo-mechanical characteristics of screw.

  • PDF

Effect of threats to anonymity on data reliability in internet survey (인터넷 설문조사에서 익명성 훼손이 응답에 미치는 효과)

  • Heo, Sun-Yeong;Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.785-794
    • /
    • 2011
  • The population of internet users are rapidly increasing and the interest of the internet survey is also increasing. Recent years has seen a transition from traditional modes of data collection into internet survey. Some surveys are administered with mixed modes of traditional data collection methods and internet survey, and some surveys are conducted through internet only instead of traditional modes, such as telephone survey, postal survey, face-to-face interviews and so on. However, one of most crucial parts of a survey is the reliability of the collected data and internet survey is no exemption. Changwon National University has been annually conducting a survey of new students and transfer students with almost same contents of questionnaire. The survey is a longitudinal survey and it had been administered by paper-pencil surveys until 2009. In 2010 the survey was administered through internet. Every students has to login with student ID number and the last 7-digit of national identity registration number, and complete the 2010 survey before registration their courses. If they leave any question without being answered, then could not move to the registration site for courses. This study explores the distortion of responses using the new students survey of Changwon National University, which could occur when the survey responses are not confidential. We find that the distortion of responses occurs from the questions with social desirability pressure, pressure of winning favor with the researcher, and pressure of explaining their situations. There are no distortion of responses from the questions which are describing simple opinions or simple facts, for example, the place they plan to live while in school.

The Effect of Surface Roughness on Breakdown in Air (공기중 절연파괴에 있어서 전극표면의 요철에 의한 영향)

  • 오철한;김미태
    • 전기의세계
    • /
    • v.28 no.11
    • /
    • pp.33-36
    • /
    • 1979
  • In a uniform field, when an electrode with a hemispherical protrusion is set in atmosphere, by applying the streamer breakdown criterion and the surface roughness factor, the effect of field distortion due to electrode surface roughness on breakdown is investigated theoretically. A quantitative relation between the threshold of breakdown and the air pressure times the heigh of protrusion is derived by the aid of a computor and the results are compared with that of SF$_{6}$./.

  • PDF

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes (비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

An experimental study of cutting abilities of an abrasive water jet system (연마제 혼합액 제트의 절단 성능에 관한 연구)

  • 안영재;유장열;권오관;김영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.611-617
    • /
    • 1989
  • A jet cutting system is a new concept of cutting device wihch requires high pressure up to thousands of atmospheric pressure. The use of water as a cutting medium brings in many of working advantages such as no dust, no gas, and no thermal distortion. And an introduction of abrasives into the water jet flow increases signigicantly cutting abilities and improves cutting performance. Cutting with abrasive water jet involves many operating variables, including design of the cutting system. For efficient cutting, the operating parameters have to chosen properly. In spite of several attempts to develop the cutting model theoretically, all of the optimization of the operating parameters is based upon exerimental results of each jet cutting system. In this paper, the effect of the parameters was measured and analysed in terms of pressure, abrasive, and transverse rate of a workpiece. Most of all, sufficient feeding of abrasives is the most important factor for efficient cutting performance.