• Title/Summary/Keyword: Pressure Correction

Search Result 390, Processing Time 0.026 seconds

Sound Propagation through the Diesel Particulate Filter (DPF) (디젤 매연여과기 (DPF) 내에서의 음향전파)

  • Choi, Won-Yong;Ih, Jeong-Guan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.152-155
    • /
    • 2005
  • Diesel particulate filter (DPF) is comprised of a number of capillary tubes enclosed by porous ceramic wails, shaped like a plugged duct. Hot gas flows through the DPF along with the exhaust noise from Diesel engine. Based on previous works on the sound propagation through DPF, in this study, losses at entrance, exit, and ceramic walls are considered and the gradients in temperature and flow velocity are considered. Transfer matrix at entrance, monolith, and exit parts are obtained by employing the segmental approach in analyzing the sound propagation through DPF. The predicted transmission loss agrees very well with the empirical one, which is measured by the improved method with correction terms.

  • PDF

Analysis on Nasal Airflow by PIV

  • Kim Sung Kyun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.138-150
    • /
    • 2001
  • Researchers have investigated nasal flow both numerically and experimentally for centuries. Experimental studies most have suffered from various limitations necessary to allow the measurements to be obtained with available equipment. Nasal airflow can be subdivided into two interrelated categories; nasal airflow resistance and heat and mass transfer between the air stream and the walls of the nasal cavity. In this study, thanks to a new method for model casting by a combination of Rapid prototyping and curing of clear silicone, a transparent rectangular box containing the complex nasal cavity is made for PIV experiments. The CBC PIV algorithm is used for analysis. Average and RMS distributions are obtained for inspirational and expiration nasal airflows. Comparison between western and Korean nasal air flows are appreciated. Flow fields for Korean model shows some differences from western's. Flow resistances for breathing are measured with varying flow rates.

  • PDF

A COMPARATIVE STUDY ON PREDICTION CAPABILITY OF AIRFOIL FLOWS USING A TRANSITION TRANSPORT MODEL (천이 전달 모델을 사용한 익형 유동의 예측 성능 비교)

  • Sa, J.H.;Jeon, S.E.;Park, S.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.8-16
    • /
    • 2014
  • Two-dimensional prediction capability of several analysis codes, such as XFOIL, MSES, and KFLOW, is compared and analyzed based on computational results of airfoil flows. To this end the transition transport equations are coupled with the Navier-Stokes equations for the prediction of the natural transition and the separation-induced transition. Experimental data of aerodynamic coefficients are used for comparison with numerical results for the transitional flows. Numerical predictions using the transition transport model show a good agreement with experimental data. Discrepancies have been found in the prediction of the pressure drag are mainly caused by the difference in the far-field circulation correction methods.

Computation of Water and Air Flow with Submerged Hydrofoil by Interface Capturing Method

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.789-795
    • /
    • 2000
  • Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are simulated numerically, considering two-fluid flows of both water and air. The computation is performed by a finite volume method using unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell wise local mesh refinement. The integration in space is of second order, based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels. The linear equations are solved by conjugate gradient type solvers, and the non-linearity of equations is accounted for through Picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations, the continuity equation, the conservation equation of one species, and the equations for two turbulence quantities. Finally, a comparison is quantitatively made at the same speed between the computation and experiment in which the grid sensitivity is numerically checked.

  • PDF

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

3-D Numerical Analysis on a low Reynolds Number Mixed Convection in a Horizontal Rectangular Channel (수평 사각채널 내 저 레놀즈수 혼합대류 유동의 3차원 수치해석)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.210-215
    • /
    • 2005
  • A three-dimensional numerical simulation is performed to investigate on a low Reynolds number mixed convection in a horizontal rectangular channel with the upper part cooled and the lower part heated uniformly. The three-dimensional governing equations are solved using a finite volume method. For convective term, the central differencing scheme is used and for the pressure correction, the PISO algorithm is used. Solutions are obtained for A=4, Pr=0.72, 10, 909, the Reynolds number ranging from $2.1{\times}10^{-2}$ to $1.2{\times}10^{-1}$, the Rayleigh number is $3.5{\times}10^4$. It is found that vortex roll structures of mixed convection in horizontal rectangular channel can be classified into three roll structures which affected by Prandtl number and Reynolds number.

  • PDF

Numerical Simulation of Chemically Reacting Shock Wave-Turbulent Boundary Layer Interactions (화학반응이 있는 난류경계층과 충격파의 상호작용에 대한수치해석)

  • Mun, Su-Yeon;Lee, Chung-Won;Son, Chang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.375-383
    • /
    • 2002
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation (k-$\varepsilon$) model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

Numerical study of flow of Oldroyd-3-Constant fluids in a straight duct with square cross-section

  • Zhang, Mingkan;Shen, Xinrong;Ma, Jianfeng;Zhang, Benzhao
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and ${\mu}$, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of the secondary flow, which has never been reported, is shown in the present work. The reason for the changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.

A Study of High Viscosity Phosphor Dispensing for an Electrostatic Printing System (전기수력학 프린팅 시스템을 이용한 고점도 형광체의 정량 토출 연구)

  • Kim, S.W.;Yang, Y.J.;Dang, H.W.;Yang, B.S.;Kim, H.B.;Choi, K.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • For chromaticity correction, it is necessary to dispense high viscosity phosphor slurry since it greatly affects the performance of white LEDs. However, it is quite difficult to dispense high viscosity fluorescent materials. In the current study, micro-discharge electrostatic printing has been used for dispensing various high viscosity phosphor slurries. We have achieved dispersions of up to 50 µg using drop on demand (DOD) discharge experiments. The experiments were conducted with different combinations of process variables such as applied voltage, pneumatic pressure, and frequency.

Surgical experience of congenitally corrected transposition of great arteries (SLL) -Case report- (심실중격결손과 근동맥류출로협책을 동반한 교정형대혈관전환증 치험 1례(SLL))

  • O, Bong-Seok;Kim, Sang-Hyeong;Lee, Dong-Jun
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.164-169
    • /
    • 1983
  • The patient in whom corrected transposition of the great vessels is an isolated congenital anomaly has a physiologically normal circulation. A 19 year old male was perforemd with surgical correction for congenitally corrected transposition of great arteries (SLL) associated with ventricular septal defect (type I) and severe pulmonary stenosis. After right sided ventriculotomy, ventricular septal defect was repaired with Dacron patch and to provide adequate relief of severe valvar stenosis of pulmonary artery, valvulotomy was done. On immediate postoperative period, complete heart block and lower cardiac output state were ocurred, but adequate blood pressure could be maintained under using of inotropic agent and temporary pace-maker.

  • PDF