• 제목/요약/키워드: Press working

검색결과 321건 처리시간 0.028초

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • 제2권2호
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

Towards a consistant safety format of steel beam-columns: application of the new interaction formulae for ambient temperature to elevated temperatures

  • Vila Real, P.M.M.;Lopes, N.;Simoes da Silva, L.;Piloto, P.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • 제3권6호
    • /
    • pp.383-401
    • /
    • 2003
  • Two new formulae for the design of beam-columns at room temperature have been proposed into Eurocode 3, prEN 1993-1-1 (2002), and are the result of great efforts made by two working groups that followed different approaches, a French-Belgian team and an Austrian-German one. Under fire conditions the prEN 1993-1-2 (structural fire design) presents formulae, for the design of beam-columns based on the prENV 1993-1-1 (1992). In order to study the possibility of having, in part 1-1 and part 1-2 of the Eurocode 3, the same approach, a numerical research was made using the finite element program SAFIR, developed at the University of Liege for the study of structures subjected to fire.

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

알루미늄 원통컵 스피닝 작업을 위한 롤러이송경로 설계 (Design of roller path for spinning of cylindrical cups of aluminum sheet metal)

  • 김종호;박규호
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.489-495
    • /
    • 1998
  • Spinning is a chipless forming method for producing axially symmetric parts by using axial-radial motions of a spinning roller. This process has still some advantages in such a view point that a variety of complex shapes which can not be formed in a press can be easily spun at a low cost although it is one of the oldest forming methods for spinning mainly cookware parts for a long time. This study is to investigate the optimum roller path in order to obtain the maximum spinnability in producing cylindrical cups of Aluminum(A1050-H16) sheet metal. Working conditions applicable to any size of blank were predetermined through preliminary spinning tests. 9 types of roller path were proposed and experiments were carried out. The modified involute curve was shown to give the maximum drawing ration and more uniform quality of spun cups as compared with other results of this study. in addition thickness distribution and dimensional accuracy of spun cups were examined and discussed.

  • PDF

냉간 회전성형법에 의한 분말성형체의 고밀도화 연구 (Density Improvement of Sintered Preforms by the Cold Rotary Forging)

  • 윤덕재;임성주;최석우;나경환
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.426-431
    • /
    • 1998
  • This study is concerned with cold repressing of sintered preforms by the rotary forging process. An experiment has been carried out using the rotary powder forging press(500kN) which was designed and constructed in the authors' laboratory. The effect of process variables and aspect ration of sintered preform on the densification behavior during the rotary repressing was studied by several mechanical test such as working force hardness distribution density and microstructures of the specimens. Since a higher densification can be achieved by applying the rotary repressing on presinted preforms it was successively demonstrated that the cold rotary powder forging is an effective operation to improve quality of P/M parts.

  • PDF

평다이를 사용한는 자유 단조 공정의 최적 단조 조건에 관한 연구 (Investigation of the Optimal Forging Condition in Open Die Forging with the Flat Die)

  • 조종래;김동권;이부윤;양동열
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.141-150
    • /
    • 1995
  • The purpose of the open die press forging is to maximize the internal deformation for better structural homogeneity and center-line consolidation in case of the ingot. A two and three dimensional viscoplastic finite element analysis is carried out for the plate, cylinder and square forging with the flat die in order to study the forging effects during the process. Effect of width, height reduction, and die staggering are studied through simulation of the process. Thus favorable working conditions are suggested for better and more disirable product quality.

  • PDF

산업현장의 소음.진동 원인분석 및 저감방안 연구 (Assessment of Can Factory working noise and its reduction)

  • 전형준;고준희;장서일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.212-216
    • /
    • 2006
  • The purpose of this study is to obtain an effective enclosing method for noise reduction of press machine operating in a manufacturing company located in Korea. Noise level of the machine is about $90{\sim}105dB$ which is higher than legal standards by industrial safety and health law. This study has predicted the level of noise reduction according to a step by step prevention plan by considering the characteristics of the cause of noise, the permitted limit of noise levels, problems and economical efficiency attendant upon the noise prevention measures. The predicted level of noise at the plant in accordance with the first step is $71.5{\sim}89.5dB(A)$, and can satisfy the permitted limit of noise in a time period of the day. Based on these results, enclosing method adequate for the selected plant's noise characteristics were suggested.

  • PDF

Uncertainty reaction force model of ship stern bearing based on random theory and improved transition matrix method

  • Zhang, Sheng dong;Liu, Zheng lin
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.191-201
    • /
    • 2016
  • Stern bearing is a key component of marine propulsion plant. Its environment is diverse, working condition changeable, and condition severe, so that stern bearing load is of strong time variability, which directly affects the safety and reliability of the system and the normal navigation of ships. In this paper, three affecting factors of the stern bearing load such as hull deformation, propeller hydrodynamic vertical force and bearing wear are calculated and characterized by random theory. The uncertainty mathematical model of stern bearing load is established to research the relationships between factors and uncertainty load of stern bearing. The validity of calculation mathematical model and results is verified by examples and experiment yet. Therefore, the research on the uncertainty load of stern bearing has important theoretical significance and engineering practical value.

Recurrence plot entropy for machine defect severity assessment

  • Yan, Ruqiang;Qian, Yuning;Huang, Zhoudi;Gao, Robert X.
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.299-314
    • /
    • 2013
  • This paper presents a nonlinear time series analysis technique for evaluating machine defect severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability distribution of the diagonal line length in the recurrence plot, which graphically depicts a system's dynamics and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the frequency information contained in the vibration signal becomes increasingly complex, leading to the increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity assessment of rolling bearings.

Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. Practical guidelines

  • Wang, Xidong;Pereira, Emiliano;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.95-103
    • /
    • 2018
  • Active vibration control via inertial mass actuators has been shown as an effective tool to significantly reduce human-induced vertical vibrations, allowing structures to satisfy vibration serviceability limits. However, a lot of practical obstacles have to be solved before experimental implementations. This has motivated simple control techniques, such as direct velocity feedback control (DVFC), which is implemented in practice by integrating the signal of an accelerometer with a band-pass filter working as a lossy integrator. This work provides practical guidelines for the tuning of DVFC considering the damping performance, inertial mass actuator limitations, such as stroke and force saturation, as well as the stability margins of the closed-loop system. Experimental results on a full scale steel-concrete composite structure (behaves similar to a footbridge) with adjustable span are reported to illustrate the main conclusions of this work.