• Title/Summary/Keyword: Press part

Search Result 1,003, Processing Time 0.034 seconds

Development of Light weight Aluminum Subframe using Hybrid forming process (복합성형공법 적용 경량 알루미늄 서브프레임 개발)

  • Kwon, T.W.;Park, B.C.;Jang, G.W.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.361-363
    • /
    • 2007
  • The light weight aluminum subframe for automobile chassis part was developed using hybrid process, i.e. extruforming, press stamping and MIG welding. To achieve a 30 % weight reduction compared with conventional steel subframe keeping satisfactory performance, the design of cross-section of extruforming part was introduced, then forming simulation was performed and the final design was determined. In addition, we tried to estibilish optimun aluminum welding conditions for good penetration depth and few pore defact, finally the prototype of aluminum subframe was assembled using MIG welding method.

  • PDF

A Study on the Press Drawing of a Sheet Metal Part with Holes on the Slope (경사면에 구멍이 있는 판재 부품의 프레스 드로잉에 관한 연구)

  • Lee, Ji-Ho;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.50-55
    • /
    • 2021
  • In this study, to create circular holes on an inclined conic face, we developed a novel process of vertical piercing on the plane before drawing, instead of applying an expensive cam-piercing method. The pierced holes are deformed during the drawing, and their shapes are affected by the size of the center hole. Using the Abaqus CAE program, the deformation tendency of the holes, according to the diameter of the center hole, was identified, and the diameter for securing the roundness of the side holes were determined through actual experiments. The developed process was successfully applied to mass production of the part, and a cost reduction is expected.

Study molded part quality of plastic injection process by melt viscosity evaluation

  • Lin, Chung-Chih;Wu, Chieh-Liang
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • A study that demonstrates how to investigate the molded part quality and the consistency of injection process based on the rheological concept is proposed. It is important for plastic material whose melt viscosity is variable with respect to the processing condition. The formulations to couple the melt viscosity with injection pressure and fill time are derived first. Taking calculations of the measured pressure and the time by using these formulations, the melt viscosity in injection process can be determined on machine. As the relation between the injection speed and the melt viscosity is constructed, the influences of the setting parameter of injection machine on the molded part quality can be investigated through evaluating the state of the melt viscosity. In addition, a pressure sensor bushing (PSB) designed with a quick installation feature is also provided and validated. The results show that a higher injection speed improves the tensile strength of the molded part but also the consistency of the molded part quality. This work provides an alternative to evaluate the molding quality scientifically.

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis (열-소성 연계 해석을 이용한 자동차 로어암 부품 개발)

  • Son, H.S.;Kim, H.G.;Choi, B.K.;Cho, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

Plate Forging Process Design for an Under-drive Brake Piston in Automatic Transmission (자동변속기용 언더드라이브 브레이크 피스톤의 판 단조공정 개선 방안)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • The under-drive brake piston is an essential part in the automatic transmissions of automobiles. This component is manufactured by forging after blanking from S55C plate with a thickness of 6mm. It is difficult to design the plate forging process using a thick plate approach since there will be limited material flow as well as large press loads. Furthermore, the under-drive brake piston has a complex shape with a right angle step, which often results in die unfill and abrupt increase in press load. To overcome these obstacles, a separate die for filling material sufficiently to the corner of the right angle step is proposed. However, this approach induces an uncontrolled workpiece surface between the dies, resulting in flash. This excess flash degrades the tool life in the final machining after cold forging as well as increases the cycle time to obtain the net-shape of the part. In the current study, we propose an optimum process design using a conventional die shaped with the benefit of finite element analysis. This approach enhanced the process efficiency without sacrificing the dimensional accuracy in the forged part. As the result, the optimum plate forging process was done with a two stage die, which reduces weight of by 6% compared with previous process for the under-drive brake piston.

Nonlinear dynamic FE analysis of structures consisting of rigid and deformable parts -Part II - Computer implementation and test examples

  • Rojek, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.327-343
    • /
    • 1994
  • This is the second part of the paper (Rojek and Kleiber 1993) devoted to nonlinear dynamic analysis of structures consisting of rigid and deformable parts. The first part contains a theoretical formulation of nonlinear equations of motion for the coupled system as well as a solution algorithm. The second part presents the computer implementation of the equations derived in the first part with a short review of the capabilities of the computer program used and the library of finite elements. Details of material nonlinearity treatment are also given. The paper is illustrated by discussing a practical problem of a safety cab analysis for an agricultural tractor.

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( Part I )- Production Part and Strip Process Layout -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.253-257
    • /
    • 2001
  • This study reveals the sheet metal working with multi-forming type ultra precision process. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming ultra precision progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. This part I of papers related to the analysis of production part and strip process layout design through the metal forming simulation by DEFORM and IDEAS.

  • PDF

Progressive Process Design of Integrated Part for Mobile Phone (모바일 폰용 일체형 부품의 프로그레시브 성형공정 설계)

  • Chang, M.J.;Kim, G.H.;Lee, C.J.;Kim, B.M.;Lee, S.B.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.110-117
    • /
    • 2011
  • The purpose of this work is to develop of a press forming process for mobile phone battery cover as an alternative to the current manufacturing process by laser welding. This press forming process consists of a combination of bending, side pressing and side bending operations. The dimensional error for each process was investigated by finite element(FE) analysis and the Taguchi optimization method. The spreading of the cover width in the side pressing process was adjusted by modifying the blank shape with a notch. The over-bending method was adopted to compensate the spring-back which occurs after bending. Forming experiments were performed to verify the reliability of the developed press forming process. In addition, the strength of the product was evaluated to verify the suitability of the battery cover manufactured with this new press forming process. The results of the forming experiments indicate that the dimensional accuracy of the battery cover is within the required tolerance. The strength of the battery cover was evaluated to 547N which is larger than required strength of 400N.