• Title/Summary/Keyword: Press control

Search Result 1,964, Processing Time 0.023 seconds

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Evaluation of Wet Pressing Response of Recycled OCC with Roll Press Simulator (롤프레스를 적용한 골판지 고지지료의 압착탈수특성평가)

  • Sung, Yong-Joo;Jeong, Wong-Ki;Kim, Dong-Seop;Oh, Min-Taek;Hong, Hae-Un;Seo, Yong-Bum;Im, Chang-Kuk;Gwon, Wan-Oh;Kim, Jin-Doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.85-90
    • /
    • 2012
  • Wet pressing process has great influence not only on the paper properties but also on the efficiency of total manufacturing process including energy efficiency. The slow drainage propensity of old corrugated container(OCC) might require more complicated control of wet pressing process. In this study, the change in press efficiency and in structure of wet sheet by the various condition of laboratory roll press simulator were evaluated to provide background information about wet pressing of OCC. The higher pressure and the slower machine speed resulted in higher efficiency of wet pressing but the change trends of dryness depending on the wet press pressure and machine speed were shown differently according to OCC treatment. The effects of water contents of felt on the wet press efficiency and sheet structure were also investigated. The higher contents of water in felt resulted in less removal of water generally and the crushed structure of wet sheet were appeared especially at higher pressure.

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

Aerodynamic Flutter Control for Typical Girder Sections of Long-Span Cable-Supported Bridges

  • Yang, Yongxin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.205-217
    • /
    • 2009
  • Aerodynamic flutter control for long-span cable-supported bridges was investigated based on three basic girder sections, i.e. streamlined box girder section, box girder section with cantilevered slabs and two-isolated-girder section. Totally four kinds of aerodynamic flutter control measures (adding fairings, central-slotting, adding central stabilizers and adjusting the position of inspection rail) were included in this research. Their flutter control effects on different basic girder sections were evaluated by sectional model or aeroelastic model wind tunnel tests. It is found that all basic girder sections can get aerodynamically more stabled with appropriate aerodynamic flutter control measures, while the control effects are influenced by the details of control measures and girder section configurations. The control effects of the combinations of these four kinds of aerodynamic flutter control measures, such as central-slotting plus central-stabilizer, were also investigated through sectional model wind tunnel tests, summarized and compared to the flutter control effect of single measure respectively.

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Complete decentralized displacement control algorithm

  • Ruiz-Sandoval, M.E.;Morales, E.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.163-183
    • /
    • 2013
  • Control systems have been greatly studied in recent years and can be classified as: passive, active, semi-active or hybrid systems. Most forms of control systems have been applied in a centralized manner where all the information is sent to a central node where control the algorithm is then calculated. One of the possible problems of centralized control is the difficulty to scale its application. In this paper, a completely decentralized control algorithm is analytically implemented. The algorithm considers that each of the control systems makes the best decision based solely on the information collected at its location. Semi-active control is used in preference to active control because it has minimal energy consumption, little to no possibility of destabilization, a reduction in the possibility of data saturation, and a reduction in the response time in comparison to centralized control.

Seismic test of modal control with direct output feedback for building structures

  • Lu, Lyan-Ywan
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.633-656
    • /
    • 2001
  • In this paper, modal control with direct output feedback is formulated in a systematic manner for easy implementation. Its application to the seismic protection of structural systems is verified by a shaking table test, which involves a full-scale building model and an active bracing system as the control device. Two modal control cases, namely, one full-state feedback and one direct output feedback control were tested and compared. The experimental result shows that in mitigating the seismic response of building structures, modal control with direct output feedback can be as effective and efficient as that with full-state feedback control. For practical concerns, the control performance of the proposed method in the presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows that although the control force may be increased, the maximum floor displacements of the controlled structure are very insensitive to sensor noise and modeling error.

Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures

  • Dhanalakshmi, K.;Umapathy, M.;Ezhilarasi, D.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.367-384
    • /
    • 2011
  • This paper presents the design and experimental evaluation of fast output sampling feedback controller to minimize structural vibration of a cantilever beam using Shape Memory Alloy (SMA) wires as control actuators and piezoceramics as sensor and disturbance actuator. Linear dynamic models of the smart cantilever beam are obtained using online recursive least square parameter estimation. A digital control system that consists of $Simulink^{TM}$ modeling software and dSPACE DS1104 controller board is used for identification and control. The effectiveness of the controller is shown through simulation and experimentation by exciting the structure at resonance.