• Title/Summary/Keyword: Press control

Search Result 1,975, Processing Time 0.025 seconds

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

The Journalism Crisis in the Era of the COVID-19 Pandemic in Indonesia

  • Dudi Iskandar;Deddy Mulyana;Sitti Murni Kaddi
    • Journal of Contemporary Eastern Asia
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2023
  • The focus of this research is the practice of journalism in relation to the Behavioural Change Journalism Fellowship (JFPP) during the COVID-19 pandemic in Indonesia. Journalists and curators who are participants in the Behavioural Change Journalism Fellowship received fundings from the state. The Behavioural Change Journalism Fellowship is a unique model because it is the only one in the world in journalism practice that involves state's financial assistance during the COVID-19 pandemic. These fundings from the state for the media lead to dilemmas and controversies. This research uses a qualitative approach and a single holistic case study method. The Behavioural Change Journalism Fellowship was held from May to December 2021, involving 7,276 journalists from 857 media (print, television, radio, and online media) and 26 curators. This study found that during the Behavioural Change Journalism Fellowship, journalism experienced a crisis and lost its function as a control overpower. Giving cash to journalists and curators during the fellowship makes journalism lose its independence and objectivity. The Behavioural Change Journalism Fellowship has degraded or eliminated the function of the press as a watchdog. Incentives for journalists while participating in the Behavioural Change Journalism Fellowship is a long-term investment by the government to co-opt Indonesian media and journalists in the future. On the other hand, the Behavioural Change Journalism Fellowship raises another aspect; the crisis of journalism. Journalism work produced in the Behavioural Change Journalism Fellowship does not reflect the values and principles of journalism. Journalism values, such as independence and impartiality, are absent from the Behavioural Change Journalism Fellowship product.

Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience

  • Shunzheng Jia;Xiuhong Niu;Fangting Jia;Tayebeh Mahmoudi
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • This investigation delves into the adverse repercussions stemming from the impact of arsenic on steel pipes concealed within soil designated for rice cultivation. Simultaneously, the study aims to ascertain effective techniques for detecting arsenic in the soil and to provide strategies for mitigating the corrosion of steel pipes. The realm of nanotechnology presents promising avenues for addressing the intricate intersection of renewable energy, oil, and environmental pollution from a novel perspective. Nanostructured materials, characterized by distinct chemical and physical attributes, unveil novel pathways for pioneering materials that exert a substantial impact across diverse realms of food production, storage, packaging, and quality control. Within the scope of the food industry, the scope of nanotechnology encompasses processes, storage methodologies, packaging paradigms, and safeguards to ensure the safety of consumables. Of particular note, silver nanoparticles, in addition to their commendable antibacterial efficacy, boast anti-fungal and anti-inflammatory prowess, environmental compatibility, minimal irritability and allergenicity, resilience to microbial antagonism, thermal stability, and robustness. Confronting the pressing issue of arsenic contamination within both environmental settings and the food supply is of paramount importance to preserve public health and ecological equilibrium. In response, this study introduces detection kits predicated upon silver nanoparticles, providing an expeditious and economically feasible avenue for identifying arsenic concentrations ranging from 0.5 to 3 ppm within rice. Subsequent quantification employs Hydride Atomic Absorption Spectroscopy (HG-AAS), which features a detection threshold of 0.05 ㎍/l. A salient advantage inherent in the HG-AAS methodology lies in its capacity to segregate analytes from the sample matrix, thereby significantly reducing instances of spectral interference. Importantly, the presence of arsenic in the soil beneath rice cultivation establishes a causative link to steel pipe corrosion, with potential consequences extending to food contamination-an intricate facet embedded within the broader tapestry of renewable energy, oil, and environmental pollution.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

Dilemma of a small dam with large basin area under climate change condition

  • Jeong-Hyeok Ma;Chulsang Yoo;Tae-Sup Yun;Dongwhi Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.559-572
    • /
    • 2024
  • Problems of under-sized dams (small dams with large basin area) could get worse under the global warming condition. This study evaluates the possible change of these problems with the Namgang Dam, an under-sized dam in Korea. For this purpose, first, this study simulates the dam inflow data using a rainfall-runoff model, which are then used as input for the reservoir operation. As a result, daily dam storage, dam release, and dam water supply are derived and compared for both past observed period (1973~2022) and future simulated period (2006~2099) based on the global warming scenarios. Summarizing the results are as follows. First, the inflow rate in the future is expected to be increased significantly. The maximum inflow could be twice of that observed in the past. As a result, it is also expected that the frequency of the water level reaching the high level is increasing. Also, the amount and frequency of dam release are to be increased in the future period. More seriously, this increase is expected to be concentrated on rather extreme cases with large dam release volume. Simply, the condition for flood protection in the downstream of the Namgang Dam is becoming worse and worse. Ironically, the severity of water shortage problem is also expected to become much worse. As the most extreme case, the frequency of no water supply was zero in the observed period, but in the future period, it becomes once every five years. Both the maximum consecutive shortage days and the total shortage volume are expected to become more than twice in the future period. To prevent or mitigate this coming problem of an under-sized dam, the only countermeasure at this moment seems to be its redevelopment. Simply a bigger dam with larger dam reservoir can handle this adverse effect more easily.

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

Evaluation of Near Surface Mounted (NSM) FRP technique for strengthening of reinforced concrete slabs

  • Chunwei Zhang;M. Abedini
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.205-216
    • /
    • 2023
  • Concrete structures may become vulnerable during their lifetime due to several reasons such as degradation of their material properties; design or construction errors; and environmental damage due to earthquake. These structures should be repaired or strengthened to ensure proper performance for the current service load demands. Several methods have been investigated and applied for the strengthening of reinforced concrete (RC) structures using various materials. Fiber reinforced polymer (FRP) reinforcement is one of the most recent type of material for the strengthening purpose of RC structures. The main objective of the present research is to identify the behavior of reinforced concrete slabs strengthened with FRP bars by using near surface mounted (NSM) technique. Validation study is conducted based on the experimental test available in the literature to investigate the accuracy of finite element models using LS-DYNA to present the behavior of the models. A parametric analysis is conducted on the effect of FRP bar diameters, number of grooves, groove intervals as well as width and height of the grooves on the flexural behavior of strengthened reinforced slabs. Performance of strengthening RC slabs with NSM FRP bars was confirmed by comparing the results of strengthening reinforced slabs with control slab. The numerical results of mid-span deflection and stress time histories were reported. According to the numerical analysis results, the model with three grooves, FRP bar diameter of 10 mm and grooves distances of 100 mm is the most ideal and desirable model in this research. The results demonstrated that strengthening of reinforced concrete slabs using FRP by NSM method will have a significant effect on the performance of the slabs.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.