• Title/Summary/Keyword: Press concrete

Search Result 5,081, Processing Time 0.022 seconds

Transverse and longitudinal partial interaction in composite bolted side-plated reinforced-concrete beams

  • Oehlers, D.J.;Nguyen, N.T.;Ahmed, M.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.553-563
    • /
    • 1997
  • A procedure is being developed for bolting plates to the sides of existing reinforced concrete beams to strengthen and stiffen them. Unlike standard composite steel and concrete beams in which there is longitudinal-partial-interaction at the steel/concrete interface (that is slip along the length of the beam), composite bolted side-plated reinforced-concrete beams are unique in that they also exhibit transverse-partial-interaction, that is slip transverse to the length of the beam. In this work, the fundamental mathematical models for transverse-partial-interaction and its interaction with longitudinal-partial-interaction are developed. The fundamental models are then further developed to determine the number of connectors required to resist the transverse forces and to limit the degree of transverse-partial-interaction in bolted side-plated reinforced concrete beams.

Generalization of shear truss model to the case of SFRC beams with stirrups

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.227-244
    • /
    • 2012
  • A theoretical model for shear strength evaluation of fibrous concrete beams reinforced with stirrups is proposed. The formulation is founded on the theory of plasticity and the stress field concepts, generalizing a known plastic model for calculating the bearing capacity of reinforced concrete beams, to the case of fibrous concrete. The beneficial effect of steel fibres is estimated taking into account the residual tensile strength of fibrous concrete, by modifying an analytical constitutive law which presents a plastic plateau as a post-peak branch. Around fifty results of experimental tests carried out on steel fibrous concrete beams available in the literature were collected, and a comparison of shear strength estimation provided by other semi-empirical models is performed, proving that the numerical values obtained with the proposed model are in very good agreement with the experimental results.

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

Partial replacement of fine aggregates with laterite in GGBS-blended-concrete

  • Karra, Ram Chandar;Raghunandan, Mavinakere Eshwaraiah;Manjunath, B.
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.221-230
    • /
    • 2016
  • This paper presents a preliminary study on the influence of laterite soil replacing conventional fine aggregates on the strength properties of GGBS-blended-concrete. For this purpose, GGBS-blended-concrete samples with 40% GGBS, 60% Portland cement (PC), and locally available laterite soil was used. Laterite soils at 0, 25, 50 and 75% by weight were used in trails to replace the conventional fine aggregates. A control mix using only PC, river sand, course aggregates and water served as bench mark in comparing the performance of the composite concrete mix. Test blocks including 60 cubes for compression test; 20 cylinders for split tensile test; and 20 beams for flexural strength test were prepared in the laboratory. Results showed decreasing trends in strength parameters with increasing laterite content in GGBS-blended-concrete. 25% and 50% laterite replacement showed convincing strength (with small decrease) after 28 day curing, which is about 87-90% and 72-85% respectively in comparison to that achieved by the control mix.

Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete

  • Shoaei, Parham;Zolfaghary, Sina;Jafari, Navid;Dehestani, Mehdi;Hejazi, Manouchehr
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.101-115
    • /
    • 2017
  • Cement kiln dust (CKD) is one of the most important waste materials in the cement industry. The large amount of this material, has encouraged researchers to propose new ways to recycle and reuse it. In this paper, effects of adding cement kiln dust to the ordinary Portland cement, on the physical and mechanical properties of ordinary and lightweight concrete were investigated. Results showed that concrete containing CKD, presents lower workability and modulus of elasticity; however, improvements in strength was observed by adding particular amounts of CKD. Eventually, it was found that adding 10% of cement weight CKD is the appropriate percentage for utilizing in manufacturing ordinary and lightweight concrete.

The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of cement, the $Fe_2O_3$ nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete $pipe-Fe_2O_3$ nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. Results show that considering the agglomeration of $Fe_2O_3$ nanoparticles, the critical fluid velocity of the concrete pipe is decreased.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.