• Title/Summary/Keyword: Press Machine

Search Result 653, Processing Time 0.023 seconds

Response prediction of laced steel-concrete composite beams using machine learning algorithms

  • Thirumalaiselvi, A.;Verma, Mohit;Anandavalli, N.;Rajasankar, J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.399-409
    • /
    • 2018
  • This paper demonstrates the potential application of machine learning algorithms for approximate prediction of the load and deflection capacities of the novel type of Laced Steel Concrete-Composite (LSCC) beams proposed by Anandavalli et al. (Engineering Structures 2012). Initially, global and local responses measured on LSCC beam specimen in an experiment are used to validate nonlinear FE model of the LSCC beams. The data for the machine learning algorithms is then generated using validated FE model for a range of values of the identified sensitive parameters. The performance of four well-known machine learning algorithms, viz., Support Vector Regression (SVR), Minimax Probability Machine Regression (MPMR), Relevance Vector Machine (RVM) and Multigene Genetic Programing (MGGP) for the approximate estimation of the load and deflection capacities are compared in terms of well-defined error indices. Through relative comparison of the estimated values, it is demonstrated that the algorithms explored in the present study provide a good alternative to expensive experimental testing and sophisticated numerical simulation of the response of LSCC beams. The load carrying and displacement capacity of the LSCC was predicted well by MGGP and MPMR, respectively.

Evaluation of geological conditions and clogging of tunneling using machine learning

  • Bai, Xue-Dong;Cheng, Wen-Chieh;Ong, Dominic E.L.;Li, Ge
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.59-73
    • /
    • 2021
  • There frequently exists inadequacy regarding the number of boreholes installed along tunnel alignment. While geophysical imaging techniques are available for pre-tunnelling geological characterization, they aim to detect specific object (e.g., water body and karst cave). There remains great motivation for the industry to develop a real-time identification technology relating complex geological conditions with the existing tunnelling parameters. This study explores the potential for the use of machine learning-based data driven approaches to identify the change in geology during tunnel excavation. Further, the feasibility for machine learning-based anomaly detection approaches to detect the development of clayey clogging is also assessed. The results of an application of the machine learning-based approaches to Xi'an Metro line 4 are presented in this paper where two tunnels buried in the water-rich sandy soils at depths of 12-14 m are excavated using a 6.288 m diameter EPB shield machine. A reasonable agreement with the measurements verifies their applicability towards widening the application horizon of machine learning-based approaches.

Improved ensemble machine learning framework for seismic fragility analysis of concrete shear wall system

  • Sangwoo Lee;Shinyoung Kwag;Bu-seog Ju
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.313-326
    • /
    • 2023
  • The seismic safety of the shear wall structure can be assessed through seismic fragility analysis, which requires high computational costs in estimating seismic demands. Accordingly, machine learning methods have been applied to such fragility analyses in recent years to reduce the numerical analysis cost, but it still remains a challenging task. Therefore, this study uses the ensemble machine learning method to present an improved framework for developing a more accurate seismic demand model than the existing ones. To this end, a rank-based selection method that enables determining an excellent model among several single machine learning models is presented. In addition, an index that can evaluate the degree of overfitting/underfitting of each model for the selection of an excellent single model is suggested. Furthermore, based on the selected single machine learning model, we propose a method to derive a more accurate ensemble model based on the bagging method. As a result, the seismic demand model for which the proposed framework is applied shows about 3-17% better prediction performance than the existing single machine learning models. Finally, the seismic fragility obtained from the proposed framework shows better accuracy than the existing fragility methods.

An insight into the prediction of mechanical properties of concrete using machine learning techniques

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;M.Ramkumar Raja;Hany S. Hussein;T.M. Yunus Khan;Pooja Sabherwal
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.263-286
    • /
    • 2023
  • Experimenting with concrete to determine its compressive and tensile strengths is a laborious and time-consuming operation that requires a lot of attention to detail. Researchers from all around the world have spent the better part of the last several decades attempting to use machine learning algorithms to make accurate predictions about the technical qualities of various kinds of concrete. The research that is currently available on estimating the strength of concrete draws attention to the applicability and precision of the various machine learning techniques. This article provides a summary of the research that has previously been conducted on estimating the strength of concrete by making use of a variety of different machine learning methods. In this work, a classification of the existing body of research literature is presented, with the classification being based on the machine learning technique used by the researchers. The present review work will open the horizon for the researchers working on the machine learning based prediction of the compressive strength of concrete by providing the recommendations and benefits and drawbacks associated with each model as determining the compressive strength of concrete practically is a laborious and time-consuming task.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Automatic categorization of chloride migration into concrete modified with CFBC ash

  • Marks, Maria;Jozwiak-Niedzwiedzka, Daria;Glinicki, Michal A.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this investigation was to develop rules for automatic categorization of concrete quality using selected artificial intelligence methods based on machine learning. The range of tested materials included concrete containing a new waste material - solid residue from coal combustion in fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed experimental tests on obtained chloride migration provided data for learning and testing of rules discovered by machine learning techniques. It has been found that machine learning is a tool which can be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified with CFBC fly ash as materials of good and acceptable resistance to chloride penetration.

Machine learning models for predicting the compressive strength of concrete containing nano silica

  • Garg, Aman;Aggarwal, Paratibha;Aggarwal, Yogesh;Belarbi, M.O.;Chalak, H.D.;Tounsi, Abdelouahed;Gulia, Reeta
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Experimentally predicting the compressive strength (CS) of concrete (for a mix design) is a time-consuming and laborious process. The present study aims to propose surrogate models based on Support Vector Machine (SVM) and Gaussian Process Regression (GPR) machine learning techniques, which can predict the CS of concrete containing nano-silica. Content of cement, aggregates, nano-silica and its fineness, water-binder ratio, and the days at which strength has to be predicted are the input variables. The efficiency of the models is compared in terms of Correlation Coefficient (CC), Root Mean Square Error (RMSE), Variance Account For (VAF), Nash-Sutcliffe Efficiency (NSE), and RMSE to observation's standard deviation ratio (RSR). It has been observed that the SVM outperforms GPR in predicting the CS of the concrete containing nano-silica.

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

Application of data mining and statistical measurement of agricultural high-quality development

  • Yan Zhou
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • In this study, we aim to use big data resources and statistical analysis to obtain a reliable instruction to reach high-quality and high yield agricultural yields. In this regard, soil type data, raining and temperature data as well as wheat production in each year are collected for a specific region. Using statistical methodology, the acquired data was cleaned to remove incomplete and defective data. Afterwards, using several classification methods in machine learning we tried to distinguish between different factors and their influence on the final crop yields. Comparing the proposed models' prediction using statistical quantities correlation factor and mean squared error between predicted values of the crop yield and actual values the efficacy of machine learning methods is discussed. The results of the analysis show high accuracy of machine learning methods in the prediction of the crop yields. Moreover, it is indicated that the random forest (RF) classification approach provides best results among other classification methods utilized in this study.

Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete

  • Sagar Paruthi;Ibadur Rahman;Asif Husain
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.607-613
    • /
    • 2023
  • The objective of this work is to determine the compressive strength of geopolymer concrete utilizing four distinct machine learning approaches. These techniques are known as gradient boosting machine (GBM), generalized linear model (GLM), extremely randomized trees (XRT), and deep learning (DL). Experimentation is performed to collect the data that is then utilized for training the models. Compressive strength is the response variable, whereas curing days, curing temperature, silica fume, and nanosilica concentration are the different input parameters that are taken into consideration. Several kinds of errors, including root mean square error (RMSE), coefficient of correlation (CC), variance account for (VAF), RMSE to observation's standard deviation ratio (RSR), and Nash-Sutcliffe effectiveness (NSE), were computed to determine the effectiveness of each algorithm. It was observed that, among all the models that were investigated, the GBM is the surrogate model that can predict the compressive strength of the geopolymer concrete with the highest degree of precision.