• Title/Summary/Keyword: Press Die Design

Search Result 192, Processing Time 0.03 seconds

A Study on Progressive Die Design by the using of Finite Element Method (유한요소법을 이용한 프로그레시브 금형 설계에 관한 연구)

  • Park, Chul-Woo;Kim, Young-Min;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1012-1016
    • /
    • 2002
  • This paper describes a research work of developing computer-aided design of a product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in Auto-LISP on the Auto-CAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout, and die layout modules. The system is designed by considering several factors, such as bending sequences by fuzzy set theory, complexities of blank geometry, punch profiles, and the availability of a press equipment. Strip layout drawing generated in the strip layout module is presented in 3-D graphic forms, including bending sequences and piercing processes with punch profiles divided into for external area. The die layout module carries out die design for each process obtained from the results of the strip layout. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

  • PDF

Analysis-based Die Face Design for the Improvement of Surface Quality for a Heat Protect Panel of an Automobile (차량용 열차단판의 면품질 개선을 위한 성형해석 기반 금형면 설계)

  • Kim, K.P.;Kim, S.H.;Lee, D.G.;Jang, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.278-283
    • /
    • 2008
  • This paper concerns the die face design for a heat protect panel aided by the finite element forming analysis in order to eliminate the surface defect and to improve the surface quality. The CAE procedure of the stamping process is introduced in order to reveal the reason of surface inferiorities and to improve surface quality. Complicated shape of the product induces the surface inferiorities such as wrinkling due to the insufficient restraining force of the forming blank and the non-uniform contact of the blank with the tools. This paper proposes a new guideline for the die design which includes the modification of tool shapes and addition of the draw-beads on the tool surface for ensuring the increased the restraining force with the uniform contact condition. The effectiveness of the proposed design is verified by the forming analysis and is confirmed by the tryout operation in the press shop. The analysis and test results show that the modified process parameters such as tool shapes and draw-beads can reduce the tendency of wrinkling and improve surface quality.

A study on the die structure for the improvement of the geometric accuracy in the single point sheet incremental forming process (판재 점진 성형 공정의 정밀도 향상을 위한 다이 구조 개선에 대한 연구)

  • LEE, Won-Joon;KIM, Min-Seok;Seon, Min-Ho;YU, ․Jae-Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • Unlike other press forming processes, ISF (Incremental sheet forming) doesn't require a punch and die set. However, during the ISF processes unwanted bending deformation occurred around the target geometry. This paper is aimed to analyze the effect of the die structure, which is supported by bolts, on the geometric accuracy of the ISF processes. In this research, the ISF processes with Al5052 sheet of 0.5 mm, the tool diameter of 6 mm and the stepdown of 0.4 mm was employed. L-shaped, step-shaped, relief-shaped geometry were employed in experiments. Sectional view and the plastic strain were compared. From this research we find out that the bolt supported ISF processes increases the geometric accuracy of products very effectively.

Optimized Design of a Press Cutter by a Taguchi's Experimental Method (다구찌 실험법에 의한 프레스 커터의 최적설계)

  • Han, Joo-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2005
  • The press cutter is productive equipment that practically manufactures mechanical components and polymer-based materials such as fabrics, papers, films, leathers, and rubbers into the desired shapes using a press cutting tool. The plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event between a press cutter and a material on a die. The cutting mechanism is complicated and involves plastic flows of a plate in the vicinity of the tip, friction between the wedge and the plate, deformation of the plate. In this paper, we studied the effect of friction between cutter and plastic sheet far producing precise and superior products. In this paper, the press cutter is analyzed numerically using MARC finite element program for a optimization design of a press cutter. The FEM computed results show that the maximum von Mises stress is concentrated on the tip of a press cutter, which may lead to the edge wear or impact wear of the sharp cutter. Based on the FEM result and Taguchi's experimental design method, the optimized design model 9 for a press cutter is recommended as a best one.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

A Study on the Optimization of Press Forming of Aluminum Door Hinge Face Parts in Automobiles (자동차 바디용 알루미늄 도어 힌지 페이스 부품의 프레스 성형 최적화에 관한 연구)

  • Seok-Joong Kim;Min-Jun Kim;Won-il Choi;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • The research direction of the automobile industry worldwide is speeding up research to improve fuel efficiency through weight reduction as the weight of automobiles increases due to environmental problems, convenience demands, and safety problems. As a way to solve weight reduction, there is a method of improving mechanical properties by improving the development and manufacturing method of lightweight materials with replaceable mechanical properties. Therefore, research on the molding and processing technology of aluminum, which is a lightweight material, is being actively conducted. In this study, aluminum material was applied. By using Autoform S/W, a press forming analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. In this study, aluminum material was applied. By using Autoform S/W, a press molding analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. The optimized results were confirmed by comparative analysis of formability and Spring Back. As a result of the experiment, it was possible to confirm the result value of the Spring Back of the final product according to the tensile change of the material.

A comparative analysis of sheeting die geometries using numerical simulations

  • Igali, Dastan;Wei, Dongming;Zhang, Dichuan;Perveen, Asma
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.111-125
    • /
    • 2020
  • The flow behavior of polymer melts within a slit die is an important consideration when designing a die geometry. The quality of the extruded polymer product can be determined through an evaluation of the flow homogeneity, wall shear rate and pressure drop across the central height of the die. However, mathematical formulations cannot fully determine the behavior of the flow due to the complex nature of fluid dynamics and the nonlinear physical properties of the polymer melts. This paper examines two slit die geometries in terms of outlet velocity uniformity, shear rate uniformity at the walls and pressure drop by using the licensed computational fluid dynamics package, Ansys POLYFLOW, based on the finite element method. The Carreau-Yasuda viscosity model was used for the rheological properties of the polypropylene. Comparative analysis of the simulation results will conclude that the modified die design performs better in all three aspects providing uniform exit velocity, uniform wall shear rates, and lower pressure drop.

Design of Strip Bridge for Unsymmetrical Progressive Stamping for an Automotive Seat Side Cushion Pane (자동차 시트 사이드 쿠션 패널의 비대칭 프로그레시브 스탬핑 성형을 위한 스트립 브릿지 설계)

  • Hong, S.;Joung, C. S.;Choi, B. S.;Lee, D. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.400-404
    • /
    • 2015
  • For mass production of stamped parts, which require complicated in-press operations, it is always advisable to use a progressive die set. It is difficult to choose a progressive die set if the stamped parts need to be deep drawn and especially if they are unsymmetrical. Because unsymmetrical deep drawing parts are very sensitive to the effect of weight during moving to the next step, they are hard to exactly locate on the die face. An automotive seat side cushion panel is about 80mm high, unsymmetrical and its low edge needs hemming, so it is hard to produce even using a progressive die set. In the current paper a progressive stamping for seat side cushion panel was examined. Five strip bridges were considered to be strong enough to move to the next die as predicted by the CAE analysis.

Development of a Channel Cutting Die Set (형재 절단금형 개발에 관한 연구)

  • Park, Kuwi-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.117-122
    • /
    • 2001
  • Many kinds of channels are used in industrial equipment and production machinery. Although mechanical saw has been used to cut many sorts of channels, there is cost rise problem because of low productivity. Shearing of channel has a special place because it helps to cut expected shape and size easily. A channel cutting die set which can be mounted and used on a hydraulic press is developed to improve the productivity of channel cutting process. Mode for the channel cutting is divided into single cut and double cut method. This study use double cut method, and the developed channel cutting die set is composed of upper and lower die set. Shearing time can be reduced from 40 minutes to 20 seconds using the developed channel cutting die set. The productivity of channel cutting process can be increased with shearing time reduction as well as cost reduction.

  • PDF

A study on the unfolding length of Z-bending machining using thin plate (박판을 이용한 Z-굽힘 가공의 전개 길이에 관한 연구)

  • Park, Yong-Sun;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2021
  • The bending process of a press die is to bend a flat blank to the required angle. There are V-bending, U-bending, Z-bending, O-bending etc. for bending processing, and the basic principle of calculating the unfolding length of die processing is used as the neutral plane length. Since the constant of the length value of the neutral surface is different depending on the type of bending, it is impossible to accurately calculate it. In particular, Z-bending processing is performed twice, and it is set on the upper and lower surfaces of the blank, and bending processing occurs at the same time as the upward and downward bending, and the elongation of the material occurs and the material increases. It is not possible to check with the calculated value, and it occurs in many cases where the mold is modified after start-up. This study aims to minimize die modification by developing a formula to calculate the development length of Z-bend.