• 제목/요약/키워드: Press Concrete

검색결과 4,976건 처리시간 0.023초

A constitutive model for confined concrete in composite structures

  • Shi, Qing X.;Rong, Chong;Zhang, Ting
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.689-695
    • /
    • 2017
  • The constitutive relation is an important factor in analysis of confined concrete in composite structures. In order to propose a constitutive model for nonlinear analysis of confined concrete, lateral restraint mechanism of confined concrete is firstly analyze to study the generalities. As the foundation of the constitutive model, peak stress and peak strain is the first step in research. According to the generalities and the Twin Shear Unified Strength Theory, a novel unified equation for peak stress and peak strain are established. It is well coincident with experimental results. Based on the general constitutive relations and the unified equation for peak stress and peak strain, we propose a unified and convenient constitutive model for confined concrete with fewer material parameters. Two examples involved with steel tube confined concrete and hoop-confined concrete are considered. The proposed constitutive model coincides well with the experimental results. This constitutive model can also be extended for nonlinear analysis to other types of confined concrete.

The torsional behavior of reinforced self-compacting concrete beams

  • Aydin, Abdulkadir C.;Bayrak, Baris
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.187-198
    • /
    • 2019
  • Torsional behaviors of beams are investigated for the web reinforcement and the concrete type. Eight beams with self-compacting concrete (SCC) and twelve beams with conventional concrete (CC) were manufactured and tested. All the models manufactured as the $250{\times}300{\times}1500mm$ were tested according to relevant standards. Two concrete types, CC and SCC were designed for 20 and 40 MPa compressive strength. From the point of web reinforcement, the web spacing was chosen as 80 and 100 mm. The rotation angles of the concrete beams subjected to pure torsional moment as well as the cracks occurring in the beams, the ultimate and critical torsional moments were observed. Moreover, the ultimate torsional moments obtained experimentally were compared with the values evaluated theoretically according to some relevant standards and theories. The closest estimations were observed for the skew-bending theory and the Australian Standard.

Flexural ductility and deformability of reinforced and prestressed concrete sections

  • Au, Francis T.K.;Leung, Cliff C.Y.;Kwan, Albert K.H.
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.473-489
    • /
    • 2011
  • In designing a flexural member for structural safety, both the flexural strength and ductility have to be considered. For this purpose, the flexural ductility of reinforced concrete sections has been studied quite extensively. As there have been relatively few studies on the flexural ductility of prestressed concrete sections, it is not well understood how various structural parameters affect the flexural ductility. In the present study, the full-range flexural responses of reinforced and prestressed concrete sections are analyzed taking into account the nonlinearity and stress-path dependence of constitutive materials. From the numerical results, the effects of steel content, yield strength and degree of prestressing on the yield curvature and ultimate curvature are evaluated. It is found that whilst the concept of flexural ductility in terms of the ductility factor works well for reinforced sections, it can be misleading when applied to prestressed concrete sections. For prestressed concrete sections, the concept of flexural deformability in terms of ultimate curvature times overall depth of section may be more appropriate.

Nominal flexural strength of high-strength concrete beams

  • Al-Kamal, Mustafa Kamal
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2019
  • The conventional ACI rectangular stress block is developed on the basis of normal-strength concrete column tests and it is still being used for the design of high-strength concrete members. Many research papers found in the literature indicate that the nominal strength of high-strength concrete members appears to be over-predicted by the ACI rectangular stress block. This is especially true for HSC columns. The general shape of the stress-strain curve of high-strength concrete becomes more likely as a triangle. A triangular stress block is, therefore, introduced in this paper. The proposed stress block is verified using a database which consists of 52 tested singly reinforced high-strength concrete beams having concrete strength above 55 MPa (8,000 psi). In addition, the proposed model is compared with models of various design codes and proposals of researchers found in the literature. The nominal flexural strengths computed using the proposed stress block are in a good agreement with the tested data as well as with that obtained from design codes models and proposals of researchers.

Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles

  • Taherifar, Reza;Mahmoudi, Maryam;Nasr Esfahani, Mohammad Hossein;Khuzani, Neda Ashrafi;Esfahani, Shabnam Nasr;Chinaei, Farhad
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.295-301
    • /
    • 2019
  • In this paper, buckling analyses of composite concrete plate reinforced by piezoelectric nanoparticles is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite concrete plate. The nano composite concrete plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of concrete plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of piezoelectric nanoparticles volume percent, geometrical parameters of concrete plate and elastic foundation on the buckling load are investigated. Results showed that with increasing Piezoelectric nanoparticles volume percent, the buckling load increases.

New explicit formulas for optimum design of concrete gravity dams

  • Habibi, Alireza;Zarei, Sajad;Khaledy, Nima
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.143-152
    • /
    • 2021
  • Large dams are a part of the infrastructure of any society, and a huge amount of resources are consumed to build them. Among the various types of dams, the optimum design of concrete gravity dams requires special attention because these types of dams require a huge amount of concrete for their construction. On the other hand, concrete gravity dams are among the structures whose design, regarding the acting forces, geometric parameters, and resistance and stability criteria, has some complexities. In the present study, an optimization methodology is proposed based on Sequential Quadratic Programming (SQP), and a computer program is developed to perform optimization of concrete gravity dams. The optimum results for 45 concrete gravity dams are studied and regression analyses are performed to obtain some explicit formulas for optimization of the gravity dams. The optimization of concrete gravity dams can be provided easily using the developed formulas, without the need to perform any more optimization process.

Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash

  • Wu, Chung-Hao;Chen, Chien-Jung;Lin, Yu-Feng;Lin, Shu-Ken
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.367-375
    • /
    • 2021
  • This study experimentally investigated the improvement of bond strength and durability of concrete containing high volume fly ash. Concrete mixtures made with 0%, 25% and 60% replacement of cement with class F fly ash were prepared. Water-binder ratios ranged from 0.28 to 0.72. The compressive, flexural and pullout bond strength, the resistance to chloride-ion penetration, and the water permeability of concrete were measured and presented. Test results indicate that except for the concretes at early ages, the mechanical properties, bond strength, and the durability-related chloride-ion permeability and water permeability of concrete containing high volume (60% cement replacement) fly ash were obviously superior to the concrete without fly ash at later ages of beyond 56 days. The enhanced bond strength for the high volume fly-ash concrete either with or without steel confinement is a significant finding which might be valuable for the structural application.

A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming

  • Sema, Alacali
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.377-391
    • /
    • 2022
  • The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.

Stress-related energy dissipation and damping model of concrete considering moisture content

  • Liu, Baodong;Zhang, Pengyuan;Lyu, Wenjuan
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.423-431
    • /
    • 2022
  • Although the influence of moisture content on the mechanical properties of concrete has been studied for a long time, research related to its influence on the damping and energy dissipation property of concrete structure is still very limited. In this paper, the relationship between damping property and moisture content of concrete using cyclic uniaxial compression is firstly presented, and the mechanism of the influence of moisture content on concrete damping and energy dissipation capacity is analyzed. Based on the experimental research, moisture-related damping and energy dissipation model is proposed. Results show that the dissipated energy of concrete and loss factor increase as the moisture content increasing. The energy dissipation coefficient reflecting the influence of stress level of concrete under cyclic load, decreases first and then increases as the moisture content increasing. The mechanism of moisture-related energy dissipation behavior can be divided into the reactive force of water, the development of the internal micro cracks and the pore water pressure. Finally, the proposed moisture-related damping and energy dissipation model are verified.

Resistance of concrete made of fibers in weight lifting slabs against impact in sports training

  • Zhi Li
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.325-336
    • /
    • 2023
  • A significant component of many civil constructions such as buildings, reservoirs, bridges, and sports halls, concrete has become increasingly popular due to its versatile properties. Concrete's internal characteristics change due to the use of different types of fibers, including changes in its microstructure, volume, and hole dimensions. Additionally, the type, dimensions, and distribution of fibers in concrete can affect the results of flexural strength tests by affecting its compressive and tensile strength. Due to a lack of information, fiber concrete is a new composite material in the production industry that requires laboratory studies to determine its behavior. This study investigated the bending behavior of multilayer slabs made of concrete reinforced by polyamide-propylene fibers against impact in weight lifting exercises. Results showed that adding fibers to concrete slab samples improved the mechanical properties while replacing them hurt the mechanical properties and failure of polymer fiber-reinforced concrete. On the other hand, adding and replacing fibers increases durability and has a positive effect.