본 논문에서는 필기체 문자의 Convex-Concave한 곡선 특징을 문자로 변환하고 추출된 문자를 Smith-Waterman 정렬 알고리즘을 이용하여 온라인 필기체 숫자 인식 방법을 제안한다. 필기체 숫자 인식을 위한 입력 데이터는 시간에 순서적인 좌표로 순서화하고 전처리의 입력데이터로 적용된다. 필기자의 개성이 표현된 필기체 문자는 크기, 회전, 곡선 비율이 다양한 형태로 나타난다. 따라서 본 논문에서는 곡선의 Convex-Concave 특징을 이용하여 크기, 회전에 강인한 특징을 추출한다. 추출된 특징은 문자로 변환하고 Smith-Waterman 정렬 알고리즘의 입력데이터로 적용한다. 본 논문에서는 실시간 필기체 숫자를 대상으로 실험한 결과, 오류역전파 신경 회로망을 적용한 것과 비교하여 제안된 방법이 좋은 성능을 보였다.
이 논문에서는 인쇄체 한글문자 인식에 있어서 신경회로망의 적용가능성을 알아 보았다. 한글 문자수의 과다와 그들 사이의 유사성, 많은 입력 영상 데이타 등으로 인하여 신경회로망을 한글인식에 적용시키는데는 많은 난점이 따른다. 한글 문자의 이진영상은 신경회로망의 입력으로 사용하기에는 그 데이타 수가 너무 많으므로 입력 영상으로부터 DC 성분을 추출하여 이것을 신경회로망의 입력으로 사용하기 위한 전처리과정을 두었다. 출력층은 한글의 특성에 맞도록 구성하였다. 한글인식에 도입된 신경회로망은 다층인식자이고, 적용된 훈련방법은 BEP 알고리듬을 한글인식에 적절하도록 변형시킨 형태이다. 이 방법을 통하여 정위치에 있는 2,300개 이상의 문자를 인식할 수 있었다. 이 결과로부터 신경회로망을 이용한 인쇄체 한글문자 인식은 적절한 방법임을 알 수 있다.
Kim, Yeon Ho;Cho, Seung Hyun;Jung, Hae Ryun;Lee, Ki Kwang
한국운동역학회지
/
제32권1호
/
pp.1-8
/
2022
Objective: This study proposes a methodology to analyze important variables that have a significant impact on the putting direction prediction using a machine learning-based putting direction prediction model trained with IMU sensor data. Method: Putting data were collected using an IMU sensor measuring 12 variables from 6 adult males in their 20s at K University who had no golf experience. The data was preprocessed so that it could be applied to machine learning, and a model was built using five machine learning algorithms. Finally, by comparing the performance of the built models, the model with the highest performance was selected as the proposed model, and then 12 variables of the IMU sensor were applied one by one to analyze important variables affecting the learning performance. Results: As a result of comparing the performance of five machine learning algorithms (K-NN, Naive Bayes, Decision Tree, Random Forest, and Light GBM), the prediction accuracy of the Light GBM-based prediction model was higher than that of other algorithms. Using the Light GBM algorithm, which had excellent performance, an experiment was performed to rank the importance of variables that affect the direction prediction of the model. Conclusion: Among the five machine learning algorithms, the algorithm that best predicts the putting direction was the Light GBM algorithm. When the model predicted the putting direction, the variable that had the greatest influence was the left-right inclination (Roll).
Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
International Journal of Computer Science & Network Security
/
제23권3호
/
pp.49-56
/
2023
Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.
본 연구에서는 헬스케어 분야에 특화된 개체명 사전을 구축하기 위해 기존 N-Gram 방식의 한계를 극복하고 성능을 향상하게 시키기 위해 새로운 역 N-Gram 방식을 제안하였다. 제안된 역 N-Gram 방식은 헬스케어 관련 빅데이터의 복잡한 언어적 특성을 더 정밀하게 분석하고 처리할 수 있다. 제안된 방식의 효율성 검증을 위해 매년 1월에 개최되는 소비자 가전 전시회(Consumer Electronics Show: CES) 기간 동안 발표된 헬스케어 및 디지털 헬스케어 관련 빅데이터를 수집하기 위하여 뉴스를 대상으로 2010년 1월 1일부터 31일, 그리고 2024년 1월 1일부터 31일까지 언급된 2,185건의 뉴스 제목 및 요약문을 파이썬 프로그래밍언어로 새로운 역 N-Gram 방식을 구현하여 전처리한 결과, 헬스케어 분야에서의 자연어 처리를 위한 사전이 안정적으로 구축되었음을 확인할 수 있었다.
웹 사용 패턴 발견은 웹 로그 데이터를 사용하는 고급 수단이며 웹 로그 데이터 마이닝에 데이터 마이닝 기술을 적용한 특정 응용이다. 교육 분야에서 데이터 마이닝 (DM)은 데이터 마이닝 기술을 교육 데이터 (대학의 웹 로그, e-러닝, 적응형 하이퍼미디어 및 지능형 튜터링시스템 등)에 적용한다. 따라서 교육 연구 문제를 해결하기 위해 이러한 유형의 데이터를 분석하는 것이 목표이다. 본 논문에서는 대학의 웹 로그 데이터가 데이터 마이닝의 연구 대상으로 사용되어 진다. 데이터베이스 OLAP 기술을 사용하여 웹 로그 데이터가 데이터 마이닝에 사용될 수 있는 데이터 형식으로 사전 처리되고 그 처리 결과가 MSSQL에 저장된다. 동시에 처리 된 웹 로그 레코드를 기반으로 기본 데이터 통계 및 분석이 완료된다. 또한 웹 사용 패턴 마이닝의 Apriori Algorithm 및 구현 프로세스를 소개하고 Python 개발 환경에서 Apriori Algorithm 프로그램을 개발했다. 그런 다음 Apriori Algorithm의 성능을 보이고 웹 사용자 액세스 패턴의 마이닝을 실현했다. 이 연구 결과는 교육 시스템 개발에 패턴을 적용하는데 중요한 이론적 의미를 갖는다. 다음 연구로는 분산 컴퓨팅 환경에서 Apriori Algorithm의 성능 향상을 연구하는 것이다.
본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.
식쌍성 극심시각의 체계적인 측광관측을 위하여 충북대학교 교내에 소형 반자동 망원경 관측시스템을 구축하였다. 이 시스템은 Paramount GT-1100s 독일식 마운트와 Celestron 14 광학계, 그리고 SBIG ST-8 CCD 카메라로 구성되었다. 한편, 관측시스템의 제어는 OBSTOOL이라는 소프트웨어에 의하여 이루어지는데, 이는 상용소프트웨어인 The Sky와 MaximDL에서 지원하는 COM(Component Object Model)을 이용하여 망원경과 CCD 카메라를 제어하도록 개발하였다. 이 시스템은 광전관측방법과 유사하게 망원경을 변광성, 비교성, 검토성 등으로 이동시키며 관측을 수행한다. 또한, 효율적인 자료처리를 위하여 작성한 Perl 스크립트로 관측 자료를 날짜별, 관측시야별, 필터별로 분류하고, IRAF소프트웨어를 이용하여 관측 영상의 전처리작업 등을 수행하도록 하였다. 또한, 이 시스템으로 관측한 식쌍성들의 식부근 광도곡선을 제시한다.
소하천은 지역주민에게 아름다운 경관과 놀이공간 및 휴식장소를 제공할 뿐만 아니라 중요 용수원이자 배수로로 활용되는 지역주민의 가장 밀접한 생활공간의 일부이며 수변의 각종 식물이나 동물이 인간과 가장 조화롭게 공존하는 공간이라 할 수 있다. 이런 소하천에 대한 정비 계획을 수립하는데 여러 가지의 방향과 모델이 제시 되어왔으나, 소하천은 다양한 변화와 많은 재원이 투입해야 하는 어려움이 있다. 소하천 정비계획은 일반하천의 정비계획과 달리 관할구역내 모든 소하천을 대상으로 일시에 수립해야 하는 계획으로 정비 우선순위 결정이 선행되어야 한다. 현재 소하천 우선순위 결정을 실시한 지역은 아직 미미한 편이며, 처리를 했다 할지라도 처리 작업이 모두 수작업으로 많은 시간이 소요되고 있다. 그러므로 지리정보시스템은 공간 자료의 분석과 관리를 위한 도구로, 소하천에 대한 정비 우선순위 결정을 위해 사용된다면 많은 도움을 줄 수 있을 것이다. 이 연구의 목적은 지형공간정보체계를 사용함으로써 소하천 정비에 있어 효율적인 우선순위 결정을 위한 것으로 소하천의 빈번한 우선순위 결정인자 변화에 신속히 대응할 수 있도록 하였다.
본 논문에서는 블럭정렬과 선두 이동법에 의해 처리된 계열을 VF(Variable to Fixed)형 산술부호로 압축하는 방법을 제시한다. 길이 N으로 분해된 부분열을 1기호씩 순회시킨 후 사전식 순서로 정렬한다. 순회정렬된 부분열은 국소적으로 유사기호가 밀 집되기 때문에 이 성질을 활용하기 위하여 선두 이동법을 적용한다. 이와 같이 전처리 된 계열에 대해 오류전파를 1 부호어 이내로 제한할 수 있는 VF형 산술부호 로 엔트 로피 부호화한다. VF형 산술부호의 효율은 고정 크기의 부호어 집합을 어떻게 분할하 는가가 관건이다. 제안하는 VFAC(VF Arithmetic Code)는 새로 설정되는 정보원 기호에 대하여 완전분할을 이루게 하고, 반복적인 그레이 변환을 이용하여 발생기호의 확률을 효과적으로 나타낸다. 제안 방식의 성능을 컴퓨터 시뮬레이션을 통하여 엔트로피, 압 축율 및 처리속도의 측면에서 기존의 방식과 비교 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.