• Title/Summary/Keyword: Preprocess Data

Search Result 64, Processing Time 0.029 seconds

DEM Extraction from LiDAR DSM of Urban Area (도시지역 LiDAR DSM으로부터 DEM추출기법 연구)

  • Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.19-25
    • /
    • 2005
  • Nowadays, it is possible to construct the DEMs of urban area effectively and economically by LiDAR system. But the data from LiDAR system has form of DSM which is included various objects as trees and buildings. So the preprocess is necessary to extract the DEMs from LiDAR DSMs for particular purpose as effects analysis of man-made objects for flood prediction. As this study is for extracting DEM from LiDAR DSM of urban area, we detected the edges of various objects using edge detecting algorithm of image process. And, we tried mean value filtering, median value filtering and minimum value filtering or detected edges instead of interpolation method which is used in the previous study and could be modified the source data. it could minimize the modification of source data, and the extracting process of DEMs from DSMs could be simplified and automated.

  • PDF

A Study on the Gender and Age Classification of Speech Data Using CNN (CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구)

  • Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.11-21
    • /
    • 2018
  • Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.

Method of preventing Pressure Ulcer and EMR data preprocess

  • Kim, Dowon;Kim, Minkyu;Kim, Yoon;Han, Seon-Sook;Heo, Jungwon;Choi, Hyun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.69-76
    • /
    • 2022
  • This paper proposes a method of refining and processing time-series data using Medical Information Mart for Intensive Care (MIMIC-IV) v2.0 data. In addition, the significance of the processing method was validated through a machine learning-based pressure ulcer early warning system using a dataset processed based on the proposed method. The implemented system alerts medical staff in advance 12 and 24 hours before a lesion occurs. In conjunction with the Electronic Medical Record (EMR) system, it informs the medical staff of the risk of a patient's pressure ulcer development in real-time to support a clinical decision, and further, it enables the efficient allocation of medical resources. Among several machine learning models, the GRU model showed the best performance with AUROC of 0.831 for 12 hours and 0.822 for 24 hours.

Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station (전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처)

  • Joongi Hong;Suntae Kim;Jeongah Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.

Design and Implementation of Advanced Web Log Preprocess Algorithm for Rule based Web IDS (룰 기반 웹 IDS 시스템을 위한 효율적인 웹 로그 전처리 기법 설계 및 구현)

  • Lee, Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.23-34
    • /
    • 2008
  • The number of web service user is increasing steadily as web-based service is offered in various form. But, web service has a vulnerability such as SQL Injection, Parameter Injection and DoS attack. Therefore, it is required for us to develop Web IDS system and additionally to offer Rule-base intrusion detection/response mechanism against those attacks. However, existing Web IDS system didn't correspond properly on recent web attack mechanism because they didn't including suitable pre-processing procedure on huge web log data. Therfore, we propose an efficient web log pre-processing mechanism for enhancing rule based detection and improving the performance of web IDS base attack response system. Proposed algorithm provides both a field unit parsing and a duplicated string elimination procedure on web log data. And it is also possible for us to construct improved web IDS system.

  • PDF

Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves

  • Ngo, Viet-Duc;Ryu, Dong-Ki;Chung, Sun-Ok;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • Objective of the study was to compare reflectance spectrum in the blade and the vein parts of cabbage and kale leaves. A total 6 cabbage and kale leaves were taken from a plant factory in Chungnam National University, Korea. Spectra data were collected with a UV/VIS/NIR spectrometer (model: USB2000, Ocean Optics, FL, USA) in the wavelength region of 190 - 1130 nm. Median filter smoothing method was selected to preprocess the obtained spectra data. We computed reflectance difference by subtraction of averaged spectrum from individual spectrum. To estimate correlation at different parts of cabbage and kale leaves, cross - correlation method was used. Differences between cabbage and kale leaves are clearly manifested in the green, red and near - infrared ranges. The percent reflectance of cabbage leaves in the NIR wavelength band was higher than that of kale leaves. Reflectance in the blade part was higher than in the vein part by 18%. Reflectance difference in the different parts of cabbage and kale leaves were clear in all of the wavelength bands. Standard deviation of reflectance difference in the vein part was greater for kale, while the value in the blade part was greater for cabbage leaves. Standard deviation of cross - correlation increased from 0.092 in the first sensor (UV/VIS) and 0.007 in the second sensor (NIR) to 0.099 and 0.015, respectively.

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.

Computer Vision-Based Car Accident Detection using YOLOv8 (YOLO v8을 활용한 컴퓨터 비전 기반 교통사고 탐지)

  • Marwa Chacha Andrea;Choong Kwon Lee;Yang Sok Kim;Mi Jin Noh;Sang Il Moon;Jae Ho Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Car accidents occur as a result of collisions between vehicles, leading to both vehicle damage and personal and material losses. This study developed a vehicle accident detection model based on 2,550 image frames extracted from car accident videos uploaded to YouTube, captured by CCTV. To preprocess the data, bounding boxes were annotated using roboflow.com, and the dataset was augmented by flipping images at various angles. The You Only Look Once version 8 (YOLOv8) model was employed for training, achieving an average accuracy of 0.954 in accident detection. The proposed model holds practical significance by facilitating prompt alarm transmission in emergency situations. Furthermore, it contributes to the research on developing an effective and efficient mechanism for vehicle accident detection, which can be utilized on devices like smartphones. Future research aims to refine the detection capabilities by integrating additional data including sound.

Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique (Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보)

  • Yi, Jae-Eung;Choi, Chang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.341-351
    • /
    • 2008
  • Since the damage from the torrential rain increases recently due to climate change and global warming, the significance of flood forecasting and warning becomes important in medium and small streams as well as large river. Through the preprocess and main processes for estimating runoff, diverse errors occur and are accumulated, so that the outcome contains the errors in the existing flood forecasting and warning method. And estimating the parameters needed for runoff models requires a lot of data and the processes contain various uncertainty. In order to overcome the difficulties of the existing flood forecasting and warning system and the uncertainty problem, ANFIS(Adaptive Neuro-Fuzzy Inference System) technique has been presented in this study. ANFIS, a data driven model using the fuzzy inference theory with neural network, can forecast stream level only by using the precipitation and stream level data in catchment without using a lot of physical data that are necessary in existing physical model. Time series data for precipitation and stream level are used as input, and stream levels for t+1, t+2, and t+3 are forecasted with this model. The applicability and the appropriateness of the model is examined by actual rainfall and stream level data from 2003 to 2005 in the Tancheon catchment area. The results of applying ANFIS to the Tancheon catchment area for the actual data show that the stream level can be simulated without large error.

Accuracy evaluation of liver and tumor auto-segmentation in CT images using 2D CoordConv DeepLab V3+ model in radiotherapy

  • An, Na young;Kang, Young-nam
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • Medical image segmentation is the most important task in radiation therapy. Especially, when segmenting medical images, the liver is one of the most difficult organs to segment because it has various shapes and is close to other organs. Therefore, automatic segmentation of the liver in computed tomography (CT) images is a difficult task. Since tumors also have low contrast in surrounding tissues, and the shape, location, size, and number of tumors vary from patient to patient, accurate tumor segmentation takes a long time. In this study, we propose a method algorithm for automatically segmenting the liver and tumor for this purpose. As an advantage of setting the boundaries of the tumor, the liver and tumor were automatically segmented from the CT image using the 2D CoordConv DeepLab V3+ model using the CoordConv layer. For tumors, only cropped liver images were used to improve accuracy. Additionally, to increase the segmentation accuracy, augmentation, preprocess, loss function, and hyperparameter were used to find optimal values. We compared the CoordConv DeepLab v3+ model using the CoordConv layer and the DeepLab V3+ model without the CoordConv layer to determine whether they affected the segmentation accuracy. The data sets used included 131 hepatic tumor segmentation (LiTS) challenge data sets (100 train sets, 16 validation sets, and 15 test sets). Additional learned data were tested using 15 clinical data from Seoul St. Mary's Hospital. The evaluation was compared with the study results learned with a two-dimensional deep learning-based model. Dice values without the CoordConv layer achieved 0.965 ± 0.01 for liver segmentation and 0.925 ± 0.04 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.927 ± 0.02 for liver division and 0.903 ± 0.05 for tumor division. The dice values using the CoordConv layer achieved 0.989 ± 0.02 for liver segmentation and 0.937 ± 0.07 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.944 ± 0.02 for liver division and 0.916 ± 0.18 for tumor division. The use of CoordConv layers improves the segmentation accuracy. The highest of the most recently published values were 0.960 and 0.749 for liver and tumor division, respectively. However, better performance was achieved with 0.989 and 0.937 results for liver and tumor, which would have been used with the algorithm proposed in this study. The algorithm proposed in this study can play a useful role in treatment planning by improving contouring accuracy and reducing time when segmentation evaluation of liver and tumor is performed. And accurate identification of liver anatomy in medical imaging applications, such as surgical planning, as well as radiotherapy, which can leverage the findings of this study, can help clinical evaluation of the risks and benefits of liver intervention.