• Title/Summary/Keyword: Prepreg

Search Result 228, Processing Time 0.028 seconds

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Analysis of the integral fuel tank considering hygrothermal enviornmental factors (열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.64-69
    • /
    • 2007
  • Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.27-35
    • /
    • 2023
  • In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.

The study on structural performance of fiber metal laminates (섬유금속 적층판의 구조적 성능 연구)

  • Kim, Sung Joon;Kim, Tae-Uk;Kim, Seungho
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • In this paper, yield stress, tangent modulus and failure strain were varied to ascertain the influence of impact response such as impact force histories and residual energy. And the buckling behavior of FML(Fiber Metal Laminates) were analyzed using numerical method. A number of analyses on FML and aluminum panel were conducted for shear and compression loading to compare the capability of stability. And to evaluate the static performance, static analysis has performed for box beam structure. Low-velocity impact analysis has performed on FML made of aluminum 2024 sheet and glass/epoxy prepreg layers. And the buckling and static performance of FML have been compared to aluminum using the analysis results. For the comparison of structural performance, similar analyses have been carried out on monolithic aluminum 2024 sheets of equivalent weight.

Experimental Study on Thermal and Mechanical Characteristics of Two Resin Composites Using the Co-Curing Process (동시 경화 제작기법을 적용한 이종 수지 복합재의 열적/기계적 특성에 관한 실험적 연구)

  • Yoon, Jin-Young;Choi, Jiduck;Park, Cheolyong;Kim, Younggyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.475-484
    • /
    • 2020
  • Individual curing process of each layer in two resin composites can be caused the separation between two layers. In this study, co-curing process for two resin composites is suggested to improve the inter-layer bonding. Glass fiber reinforced composites with phenolic and epoxy resins were manufactured by co-curing process, and several types of glass/phenolic composites were considered to confirm the application on two resin composites. Experiments for smoke resistance, scratch resistance and flexural strength were carried out to verify requirements corresponding to thermal and mechanical environments. It was validated that two resin composites with phenolic resin impregnated prepreg exhibits good thermal and mechanical characteristics, and it can serve as highly effective composite structures in aerospace and many industry areas.

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Heung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The satellite system experiences severe mechanical loads during the launch period. Therefore, the positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading conditions during the launch period. This paper presents modal and stress analysis results due to quasi-static loads for the satellite antenna system. The failure tendency fur the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

Strength of Glass/Epoxy Fabric Joints under the Pin-Loading (핀하중을 받는 유리/에폭시 평직 적층판의 체결부 강도)

  • 박노희;권진희;김종훈;변준형;양승운
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • The strength of glass/epoxy fabric joints under pin-loading is estimated based on the characteristics length method and experiment. To investigate the effect of finite element idealization for the contact between pin and laminate, three modeling cases are analyzed; assuming the cosine load distribution around the contact area, constraining the radial displacement at the hole boundary, and using the contact element. To study the effect of failure criteria, Tsai-Wu and Yamada-Sun methods are applied on the characteristic curve. The results of the nonlinear analysis using the contact element showed good agrements with experimental data in both laminates made of uni-directional prepreg tapes and fabrics. In terms of failure criteria, Tsai-Wu method showed better agreement with experimental results than the one by Yamada-Sun laminate.

The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates (Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).

A Study of the FE Analysis Technique of Hybrid Blades for Large Scale Wind-Turbine (대형 풍력발전기용 하이브리드형 블레이드 구조해석)

  • Kang, Byong-Yun;Kim, Yun-Hae;Kim, Do-Wan;Kim, Myung-Hun;Han, Jeong-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • According to recent figures, 35% of the world's blades are made using prepreg blades, by Vestas and Gamesa. They are the most advanced in the market today. In this study, we investigated the validity of the finite element method (FEM) applied to an FE analysis of a hybrid composite wind-turbine blade. Two methods were suggested for a composite FE analysis: using the equivalent properties of the composite or using stacking properties. FE analysis results using the stacking properties of the composite were in good agreement with results of using the equivalent properties. The difference between FE results was approximately 0.6~13.3%.