• Title/Summary/Keyword: Premixed system

Search Result 165, Processing Time 0.023 seconds

Comparison of Formaldehyde Emission Rate and Formaldehyde Content from Rice Husk Flour Filled Particleboard Bonded with Urea-Formaldehyde Resin

  • Lee, Young-Kyu;Kim, Sumin;Kim, Hyun-Joong;Lee, Hwa Hyoung;Yoon, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.42-51
    • /
    • 2006
  • The this study, the effect of rice husk flour (RHF) as scavenger on formaldehyde emission rate and formaldehyde content from urea-formaldehyde (UF) resin bonded RHF content wood particleboards (PB). Two type of particle size ($30{\mu}m$ and $300{\mu}m$) of RHF was premixed with the UF resin at 5% and 15% by weight. The performance of UF resins is greatly influenced by the curing characteristics in their curing processing. The curing behavior was monitored activation energy ($E_a$) by DSC and pH variation according to RHF contents. PB with dimensions of $27cm{\times}27cm{\times}0.7cm$ was prepared at a specific gravity of 0.75 using $E_1$ and $E_2$ class UF resins. Formaldehyde emission and formaldehyde content from RHF filled PB bonded with UF resin was measured by 24 h desiccator and perforator method, respectively. RHF causes an increased pH of UF resin. $E_a$ of the modified UF resin decreased independently of RHF particle size. As the pH and the $E_a$ variation of the UF resin containing RHF increased, the amount of formaldehyde content decreased. The formaldehyde emission and formaldehyde content levels of the PB bonded with 15 wt% of $30{\mu}m$ RHF and $E_2$ type UF resin were low and satisfied grade $E_1$, as measured by 24 h desiccator and perforator method. The result of a comparison between 24 h desiccator and perforator test using PB showed that the linear regression analyses show a good correlation between the results for the 24 h desiccator and the perforator tests. The linear regression of a correlation between the desiccator and the perforator was Y=4.842X-0.064 ($R^2=0.989$). RHF was effective at reducing formaldehyde emission and formaldehyde content in urea-formaldehyde adhesives when used as scavenger.

A Study on the Types and Causes of Medication Errors and Related Drugs - by Analyzing AJNs Medication Error 73 Cases - (임상에서의 투약오류원인과 관련 의약품 분석 - AJN에 기고된 Medication Error 기사의 73사례를 중심으로 -)

  • Cho Won Sun
    • Journal of Korean Public Health Nursing
    • /
    • v.16 no.1
    • /
    • pp.176-189
    • /
    • 2002
  • The purpose of this study were to illustrate the various medication error types and causes and identified to related drugs to provide basic data for preventing nurses' medication error by analysing 73 cases of AJN 'medication Error' column(1993, Oct -2000, Nov). Nurses' types of medication error were classified into 7 types. The most frequent error types are wrong medication$(21.9\%)$ and the wrong dose$(21.9\%)$ together. The others are wrong $time(4.1\%)$, $omission(2.7\%)$, mechanical $error(2.7\%)$, incorrect IV $rate(1.4\%)$. wrong route $administration(1.4\%)$ in order. Nurses' causes of medication error were 9 kinds. The most frequent type is confusing between similar drug shape, color, size, name, injection devices and patient's $name(43.9\%)$ and the others are lack of knowledge about $drugs(26.8\%),\; slips(7.3\%),\; miscalculating\;dose(4.9\%)$, incorrect adjusts $devices(4.9\%)$, difficulty to read or illegible decimal $point(4.9\%),$ $abbreviation(2.4\%)$, fatigue with $overwork(2.4\%)$ and no communication with $patient(2.4\%)$ in order. Related drugs with medication error are as follows. - dose unit(IU. minims. mcg/min. mEq) : Heparin. insulin. synthetic calcitonin, some enzymes and hormones, vitamins, some antibiotics, tuberculin injection. MgSO4 injection. nitroglycerin - similar size, color and shape drug : $0.9\%$ N/S and acetic acid $0.25\%$ for irrigation. premixed 2mg lidocaine sol. and $0.9\%$ N/S, gentamycin 20mg/2mL for children and 80mg/2mL for adult, dextroamphetamine 5mg and 10mg capsule. sedatives chloral hydrate 250mg/5mL and 500mg/5mL - similar name :Aredia(pamidronate disodium) and Adriamycin(doxorubicin), Lamictal (lamotrigine) and Lamisil 250mg. Elderpryl and enalapril, cefotaxime and cefoxitin, carboplatin and cisplatin, sumatriptan and zolmitriptan, Celebrex and Celexa, Humulin and Humalog, Percodan and Percocet, Diabeta and Diabinese, Epivir and Retrovir, Xanax(alprazolam) and Zantac(ranitidine) - decimal point : low molecular weight warfarin, methotrexate - unfamiliar drug uses of familiar drug ; methotrexate. droperidol, imipramine, propranolol - number of drug name(misleading chemical name) : 6-thioguanine, 6-mercaptopurine, 5-fluorouracil - type of administration route : Oxycodone(OxyContin). - administration time : acarbose(Precose). - injection way (Z-track method): hydroxyzine - epidural cathether : LMWHs(enoxaparin, dalteparin), - ADD Vantage self contained delivery system : ceftriaxone(Rocephin)

  • PDF

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).