• Title/Summary/Keyword: Premixed Flames

Search Result 356, Processing Time 0.024 seconds

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Comparison of CARS CO and Temperature Measurements with Numerical Calculation for Methane/Air Premixed Flames (메탄/공기 예혼합화염에서 CARS를 이용한 CO 농도 및 온도측정과 수치해석 결과의 비교)

  • 강경태;정석호;박승남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1333-1339
    • /
    • 1995
  • Recently developed technique of measuring minor species concentration by using the modulation dip in broadband CARS has been applied to the flame structure study of methane/air premixed flames in a counterflow. This method used the modulation dip from the cold band CO Q-branch resonant signal superimposed on the nonresonant background. The measured CO concentration profile in a symmetric and unsymmetric methane/air premixed flames together with the velocity and temperature by using LDV and CARS have been compared with the numerical results adopting detailed chemistry modeling. The results show that there is a satisfactory agreement between the experimental data and numerical results for velocities, temperatures and CO concentrations. And the modulation dip technique of measuring minor species, such as CO is a viable tool for a quantitative measurement in a flame.

CO Emission Characteristics in the Interacting Counterflow Methane and Hydrogen Partially Premixed Flames (상호작용하는 대향류 메탄-수소 부분예혼합화염의 CO 배출특성)

  • Park, Ji-Woong;Oh, Chang Bo;Kim, Tae-Hyung;Park, Jongho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • The CO emission characteristics of interacting hydrogen and methane partially premixed flames were numerically investigated. A counterflow geometry was introduced to establish interacting two partially premixed flames. An one-dimensional OPPDIF code was used to simulate the interacting flames. The GRI-v3.0 was used to calculate the chemical reactions. Emission index for CO(EICO) was evaluated to quantify the CO emitted from the interacting flames. The global strain rate and equivalence ratios for each flame(${\Phi}_{CH_4}$ and ${\Phi}_{H_2}$) were used as parameters to control the extent of interaction between two partially premixed flames. When ${\Phi}_{CH_4}$ was kept to stoichiometric condition and ${\Phi}_{H_2}$ was at rich condition, unburned H2 species of hydrogen flame was transported to the methane flame and affected reactions related with CO formation. When ${\Phi}_{CH_4}$ increased from a stoichiometry to rich condition while ${\Phi}_{H_2}$ was kept to stoichiometric condition, EICO increased initially, had a peak value at ${\Phi}_{CH_4}=1.5$ and decreased gradually. This could be elucidated with an analysis for the elementary reactions related with CO formation.

Numerical Investigations of Turbulent Stratified Premixed Flames (난류 성층 예혼합 화염장의 상세구조 해석)

  • Jeon, Sangtae;Kim, Namsu;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.183-184
    • /
    • 2014
  • The multi-environment probability density function model has been applied to simulate the turbulent stratified premixed flames. The direct quadrature method of moments (DQMOM) has been adopted to solve the transport PDF equation due to its computational efficiency and robustness. Computations are made for the non-swirling turbulent stratified premixed flames including SWB1, SWB5 and SWB9. The numerical results obtained in this study are precisely compared with experimental data in terms of axial velocity, unconditional means and conditional means for scalar field including temperature and species mass fraction.

  • PDF

Study on Flame Stability Using a Slot Burner (슬롯버너를 이용한 예혼합화염의 안정성에 관한 연구)

  • Lee, Won-Nam;Seo, Dong-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.97-103
    • /
    • 2001
  • The characteristics of flame stability have been studied experimentally using a slot burner. The blowout conditions of a fuel-lean premixed laminar flame, which is located in the middle of fuel-rich premixed laminar flames, are identified for propane, ethylene, and methane flames. The fuel-rich flames could stabilize the fuel-lean flame for the equivalence ratio as low as 0.2. The laminar flame speed along with the heat release rate is likely to be the important factor in stabilizing a fuel-lean flame. The increase of heat release rate on a fuel-rich flame lowers the equivalence ratio limit for the stable fuel-lean flames. The stability of fuel-lean flames, however, was not sensitive to the equivalence ratio of a fuel-rich flame.

  • PDF

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • Vu, Tran Manh;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

A Numerical Study on the Lean-Rich Interaction of Methane/Air Flames (희박-과농 메탄 화염의 상호작용에 관한 수치해석적 연구)

  • Lee, Seung-Dong;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.377-383
    • /
    • 1996
  • Interaction of flames in a lean-rich concentration field is studied numerically adopting a counterflow as a model problem. Detailed kinetic mechanism is adopted in analyzing the structure of various type of flames which can be found in lean-rich interaction. Flow field is simplified to quasi one-dimensional by using boundary layer approximation and similarity formulation. Triple flames are identified and its structure shows that a diffusion flame is located in the middle of two premixed flames. Such a diffusion flame is formed by $H_2$ and CO generated from the rich premixed flame and $O_2$ leaked from the lean premixed flame. The flame position can be identified either from the hydrogen production rate or the heat release rate. Transition from single diffusion flame to triple flame is observed as degree of premixing is increased.

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

A Basic Study on Combustion Noise of Premixed Flames in Sudden Expansion Channels (급속 확대 채널 예혼합 화염의 연소 소음 기초 연구)

  • Liu, Zhao;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.79-81
    • /
    • 2012
  • Flame stabilization conditions and combustion noise characteristics induced by premixed flames in sudden expansion channels were experimentally investigated. Nozzle size and channel scale were varied continuously, and variation of flame behaviors was examined. Combustion noise was observed at specific configurational conditions, and their mechanism was investigated. This study will help understand premixed flame instability at the burner surface.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF