• Title/Summary/Keyword: Premixed Charging Compression Ignition

Search Result 3, Processing Time 0.024 seconds

Effects of optimal operating conditions on 2-stage injection PCCI diesel engine using Response Surface Methodology (반응 표면법을 이용한 2 단 분사 PCCI 디젤엔진의 운전조건의 영향도 평가에 대한 연구)

  • Lee, Jae-Hyeon;Kim, Hyung-Min;Lee, Ki-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3044-3048
    • /
    • 2008
  • It is well known that Premixed Charge Compression Ignition (PCCI) diesel engines according to many technologies such a change in injection timing, multiple injection strategy, cooled EGR, intake charging and SCV have the potential to achieve homogeneous mixture in the cylinder which result in lower NOx and PM as well as performance improvements. This may generate merely the infinite number of experimental conditions. The use of Response Surface Methodology (RSM) technique can considerably pull down the number of experimental set and time demand. This paper presents the effects of both fuel injection and engine operation conditions on the combustion and emissions in the PCCI diesel engine system. The experimental results have revealed that a change in fuel injection timing and multiple injection strategy along with various operating conditions affect the combustion, emissions and BSFC characteristics in the PCCI engine.

  • PDF

A Study on the Effect of Compression Ratio and EGR on the Partial Premixed Diesel Compressed Ignition Combustion Engine Applied with the Split Injection Method (2단 분사방식을 적용한 부분 예혼합 디젤압축착화연소엔진의 성능에 미치는 압축비 및 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kang, Woo;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-38
    • /
    • 2006
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogenous charge compression ignition(HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. In addition, this study confirmed the possibility of securing optimum fuel economy emission reduction in the IMEP 8bar range(which could not be achieved with existing partially premixed combustion) through forced charging, exhaust gas recirculation(EGR), compression ratio change and application of DOC catalyst.

The Effect of Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine on Emissions under Partial Loads Conditions (부분부하에서 커먼레일 과급 디젤엔진의 VGT와 EGR 제어가 배출물에 미치는 영향)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Jeong-Ho;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.151-158
    • /
    • 2007
  • The static and dynamic behaviour of VGT and EGR systems has a significant impact on overall engine performance, fuel economy and exhaust emissions. This is because they define the state and composition of the air charge entering the engine. This work focused on the effect of the aperture ratio of VGT and EGR on the emission and flow characteristics under partial loads conditions. The investigation carried out using 2 liter PCCI 4 cylinder diesel engine with VGT and EGR. The result of this study shows that smoke increases with increasing EGR rate and NOx decreases with increasing EGR rate. It was also found that the residual gas contents greatly impact on soot emission under partial load condition. Finally, it can be concluded that VGT and EGR aperture ratio can greatly impact not only on soot and NOx but also air charging.