• Title/Summary/Keyword: Premature aging

Search Result 49, Processing Time 0.027 seconds

Effects of Polygoni Multiflori Radix on the Elastase, and Collagenase Activities and the Procollagen Synthesis in Hs68 Human Fibroblasts

  • Kim, Myung-Gyou;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Objectives : Polygoni Multiflori Radix (PMR), the roots of Polygonum multiflorum Thunberg, is used to nourish the blood and yin and used for preventing premature greying of the hair. There are some articles on its preventing effects on the melanogenesis. However, there is no report about its effects on the collagen and elastin. The present study was designed to investigate its effects on collagen metabolism and elastase activity. Methods : The effects of PMR on type I procollagen production and collagenase activity in human normal fibroblasts Hs68 after UVB (312 nm) irradiation were measured by ELISA method. Cells were pretreated with the PMR for 24 hours prior to UVB irradiation. After UVB irradiation, cells were retreated with the sample and incubated for additional 24 hours. The amount of collagen type I was measured with a procollagen type I C-peptide assay kit. The activity of collagenase was measured with a MMP-1 human biotrak ELISA system. The elastase activities after treatment of PMR were measured as well. Results : In the present study, the collagen production was not increased. However, the increased collagenase activity after UVB damage was significantly recovered to $50.2{\pm}14.5%$, $8.2{\pm}3.1%$, and $10.0{\pm}3.3%$ (10, 30, and $100{\mu}g/ml$). The elastase activities (10, 100, and $1000{\mu}g/ml$) significantly reduced to $75.2{\pm}5.2%$, $40.3{\pm}1.2%$, and $27.0{\pm}1.9%$, respectively. Conclusion : PMR showed the inhibitory effects on collagenase and elastase activity. These results suggest that PMR may have potential as an anti-aging ingredient in cosmetic herbal treatment.

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages

  • Hwang, Won-Sang;Park, Seong-Hoon;Kim, Hyun-Seok;Kang, Hong-Jun;Kim, Min-Ju;Oh, Soo-Jin;Park, Jae-Bong;Kim, Jae-Bong;Kim, Sung-Chan;Lee, Jae-Yong
    • Nutrition Research and Practice
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid at ($200{\mu}M$) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered $SA-{\beta}-gal$ positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of $20{\mu}M$ of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.

Effect of Zanthoxylum piperitum Extract on Human Skin Protection from UVB by Regulation of COP1 and PPAR-α (초피나무 열매 추출물의 COP1 및 PPAR-α 조절을 통한 자외선에 대한 피부 보호 효과)

  • Kim, Yun-Sun;Kim, Yumi;Lee, Sanghwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.393-401
    • /
    • 2016
  • Ultraviolet (UV) irradiation from the sun is the primary environmental factor that causes skin damages including skin cancer and premature skin aging. Because, even the most powerful sunscreen can't always afford enough protection, it is necessary to enhance the defensive power of skin against UV. Recently, constitutive photomorphogenic protein-1 (COP1) has shown to contribute to the regulation of UVB response of keratinocytes. In this study, we represent that COP1 and its associated protein, de-etiolated 1 (DET1), might participate in photoaging process in human skin as Arabidopsis COP1 does sun-protective function in plants. After UVB irradiation, the decrease of COP1 and DET1 mRNA expression was followed by the increase of c-Jun total protein. Moreover, transfection with DNA vectors expressing COP1 and DET1 down-regulated the c-Jun total protein. We found that Zanthoxylum piperitum extract (ZE) up-regulated the expression of COP1 and DET1 on human keratinocytes, and inhibited the expression of MMP1 which is one of the genes regulated by c-Jun signal. In addition, ZE has been reported to stimulate PPAR-${\alpha}$ and strengthen the skin barrier. We found that ZE decreased the UVB-induced IL-6 and IL-8 in NHEK cells. In human study, ZE protected skin against UV-B induced erythema and erythema-induced pigmentation. These results indicate that ZE could be useful for the protection against the adverse effects of UV irradiation through various mechanisms.

Effects of 7-MEGATM 500 on Oxidative Stress, Inflammation, and Skin Regeneration in H2O2-Treated Skin Cells

  • Song, In-Bong;Gu, Hyejung;Han, Hye-Ju;Lee, Na-Young;Cha, Ji-Yun;Son, Yeon-Kyong;Kwon, Jungkee
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Environmental stimuli can lead to the excessive accumulation of reactive oxygen species (ROS), which is one of the risk factors for premature skin aging. Here, we investigated the protective effects of $7-MEGA^{TM}$ 500 (50% palmitoleic acid, 7-MEGA) against oxidative stress-induced cellular damage and its underlying therapeutic mechanisms in the HaCaT human skin keratinocyte cell line (HaCaT cells). Our results showed that treatment with 7-MEGA prior to hydrogen peroxide ($H_2O_2$)-induced damage significantly increased the viability of HaCaT cells. 7-MEGA effectively attenuated generation of $H_2O_2$-induced reactive oxygen species (ROS), and inhibited $H_2O_2$-induced inflammatory factors, such as prostaglandin $E_2$ ($PGE_2$), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), and $interleukin-1{\beta}$ ($IL-1{\beta}$). In addition, cells treated with 7-MEGA exhibited significantly decreased expression of matrix metalloproteinase-1 (MMP-1) and increased expression of procollagen type 1 (PCOL1) and Elastin against oxidative stress by $H_2O_2$. Interestingly, these protective activities of 7-MEGA were similar in scope and of a higher magnitude than those seen with 98.5% palmitoleic acid (PA) obtained from Sigma when given at the same concentration (100 nL/mL). According to our data, 7-MEGA is able to protect HaCaT cells from $H_2O_2$-induced damage through inhibiting cellular oxidative stress and inflammation. Moreover, 7-MEGA may affect skin elasticity maintenance and improve skin wrinkles. These findings indicate that 7-MEGA may be useful as a food supplement for skin health.

Soil and Leaf Chemical Properties and Fruit Quality in Kiwifruit Orchard (국내 키위 주산지 토양 및 엽 화학성과 과실 특성)

  • Kim, Hong Lim;Lee, Mock-hee;Chung, Kyeong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.158-166
    • /
    • 2022
  • BACKGROUND: Kiwifruit is a fruit tree with relatively small cultivation area in Korea and researches on its soil and physiology are very limited compared to those on cultivar development. Therefore, there are limited information for farmers to cope with the reduction in productivity due to various physiological disorders and premature aging. This study was conducted to investigate the soil and leaf chemical properties, and fruit characteristics, which will be used as basic data for stable kiwifruit orchard soil management. METHODS AND RESULTS: The soil and leaf chemical properties, and fruit characteristics were investigated for two years in 16 kiwifruit orchards growing 'Hayward' (Actinidia deliciosa) in Jeollanam-do and Gyeongsangnam-do. Soil and leaf samples were collected in July and fruit quality was investigated by harvesting fruits about 170 days after full bloom. The average soil chemical properties of kiwi orchards were generally higher than the recommended level, except for pH, and especially, the exchangeable potassium reached about 300% of the recommended level. The proportions of orchards that exceeded the recommended level of soil chemical properties were 63, 31, 100, 69, 94, 88 and 69% for pH, EC, organic content, available phosphate, and exchangeable potassium, calcium and magnesium, respectively. Thirty-three percent of orchards had more than 100 mg/kg of nitrate nitrogen in soil. Available phosphate in soil showed a significantly positive correlation with leaf nitrogen, phosphoric acid and calcium content, but showed a significantly negative correlation with leaf potassium content. The magnesium content in the leaves was significantly correlated with soil pH. The highest fruit weight was observed in about 25 g/kg of leaf nitrogen content which could be attained when plants were grown on the soil containing about 100 mg/kg of nitrate nitrogen content. The average soluble solids content among 16 orchards was 9.58 °Brix at harvest and 13.9 °Brix after ripening, which increased about 45%, and the average fruit weight was about 110 g. CONCLUSION(S): For fruit quality, fruit soluble solids (sugar compounds) content was significantly correlated with leaf potassium content, fruit hardiness with leaf total nitrate, calcium and magnesium, and fruit titratable acidity with leaf magnesium; however, leaf calcium and magnesium negatively affect the soluble solids contents in fruits.

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF

Effects of Resveratrol and Resveratryl Triacetate on The Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10 (대기 미립자 물질 PM10에 노출된 인간 표피 각질형성세포의 염증 반응에 대한 레스베라트롤과 레스베라트릴 트라이아세테이트(RTA)의 영향)

  • Choi, Min A;Seok, Jin Kyung;Lee, Jeong-won;Lee, Shin Young;Kim, Young Mi;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.249-258
    • /
    • 2018
  • Airborne pollution causes oxidative damage, inflammation, and premature aging of skin. Resveratrol is a polyphenol compound that has various biological activities such as antioxidant, anti-inflammation, and anti-melanogenic activities but it is unstable to heat and light. Resveratryl triacetate (RTA) is a new cosmetic ingredient that is more stable than resveratrol and its skin safety and whitening efficacy have been reported previously. The purpose of this study was to examine the effects of resveratrol and resveratryl triacetate (RTA) on the inflammatory responses of human epidermal keratinocytes (HEKs) exposed to airborne particulate matters with a diameter of < $10{\mu}m$ (PM10). Cultured HEKs were exposed to PM10 in the absence or presence of resveratrol and RTA. Assays were undertaken to determine cell viability, the production of reactive oxygen species (ROS), and the expression of inflammatory cytokines. PM10 treatment decreased cell viability, and increased the expression of pro-inflammatory cytokines such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and interleukin-8 (IL-8). Resveratrol and RTA reduced cell death and ROS production induced by PM10. PM10-induced mRNA expression of the inflammatory cytokines was either attenuated (IL-6), or enhanced ($IL-1{\beta}$), or unaffected ($TNF-{\alpha}$ and IL-8) by resveratrol and RTA. PM10-induced IL-6 protein expression was attenuated by resveratrol and RTA. This study suggests that resveratrol and RTA have activities regulating cell damage and inflammatory responses of the skin exposed to airborne particulate matters.

Legislative Study on the Mitigation of the Burden of Proof in Hospital Infection Cases - Focusing on the revised Bürgerliches Gesetzbuch - (병원감염 사건에서 증명책임 완화에 관한 입법적 고찰 - 개정 독일민법을 중심으로 -)

  • Yoo, Hyun Jung
    • The Korean Society of Law and Medicine
    • /
    • v.16 no.2
    • /
    • pp.159-193
    • /
    • 2015
  • Owing to causes such as population aging, increased use of various medical devices, long-term hospitalization of various patients with reduced immune function such as cancer, diabetes, and organ transplant patients, and the growing size of hospitals, hospital infections are continuing to increase. As seen in the MERS crisis of 2015, hospital infections have become a social and national problem. In order to prevent damage due to such hospital infections, it is necessary to first strictly implement measures to prevent hospital infections, while, on the other hand, providing proper relief of damage suffered due to hospital infections. However, the mainstream attitude of judicial precedents relating to hospital infection cases has been judged to in fact shift responsibility over damages due to hospital infections on the patient. In light of the philosophy of the damage compensation system, whose guiding principle if the fair and proper apportionment of damages, there is a need to seek means of drastically relaxing the burden of proof on the patient's side relative to conventional legal principles for relaxing the burden of proof, or the theory of de facto estimation. In relation to such need, the German civil code (Burgerliches Gesetzbuch), which defines contracts of medical treatment as typical contracts under the civil code, and has presumption of negligence provisions stipulating that, in cases such as hospital infections which were completely under the control of the medical care providers, if risks in general medical treatment have been realized which cause violations of the life, body, or health of patients, error on the part of the person providing medical care is presumed, was examined. Contracts of medical treatment are entered into very frequently and broadly in the everyday lives of the general public, with various disputes owing thereto arising. Therefore, it is necessary to, by defining contracts of medical treatment as typical contracts under the civil code, regulate the content of said contracts, as well as the proof of burden when disputes arise. If stipulations in the civil code are premature as of yet, an option may be to regulate through a special act, as is the case with France. In the case of hospital infection cases, it is thought that 'legal presumption of negligence' relating to 'negligence in the occurrence of hospital infections,' which will create a state close to equality of arms, will aid the resolution of the realistic issue of the de facto impossibility of remedying damages occurring due to negligence in the process of occurrence of hospital infections. Also, even if negligence is presumed by law, as the patient side is burdened with proving the causal relationships, such drastic confusion as would occur if the medical care provider side is found fully liable if a hospital infection occurs may be avoided. It is thought that, alongside such efforts, social insurance policy must be improved so as to cover the expenses of medical institutions having strictly implemented efforts to prevent hospital infections in the event that they have suffered damages due to a hospital infection accident, and that close future research and examination into this matter will be required.

  • PDF