• Title/Summary/Keyword: Preliminary-Design

Search Result 2,099, Processing Time 0.03 seconds

A Study on Analysis of Construction Monitoring Cost and Improvement Measures of Railway Tunnel Construction in Seoul (서울시 철도터널 건설공사의 공사계측비 분석 및 개선방안 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Purpose: This study is to contribute to the development of monitoring technology through the increase of confidence in construction monitoring by deriving the analysis of construction monitoring cost and improvement measures of railway tunnel construction in Seoul. Method: It presents the status on design and contract of construction monitoring cost, status on application construction monitoring cost and its analysis, analysis on safety management cost and quality management cost, expansion of application of the price calculation standard for monitoring management services to improve this, and monitoring for direct order of ordering organization. Results: If the monitoring management service that was meanwhile ordered as included in the construction work is performed by the directly selected company of ordering organization through the preliminary screening for bidding qualification, then the improvement of monitoring quality and the accurate monitoring data can be secured. Conclusion: For the price calculation standard for monitoring management service, the application of actual cost addition method under the Engineering Promotion Act and the calculation standard of monitoring management cost for standard estimation for ground survey should be extended through the direct order of ordering organization, not the method to be included in the net construction cost where it is performed by a subcontractor via contractor.

Effect of Intensively Complex Physical Therapy Program on Pain, Range of Motion and Muscle Function in Traumatic Low Back pain: A preliminary study (집중 복합 물리치료 프로그램이 외상성 요통 환자의 통증, 관절가동범위와 근기능에 미치는 영향: 예비연구)

  • Young-Hyeon, Bae;Moon-Ju, Ko;Young-Bum, Kim;Sung Shin, Kim;Kyung-Ju, Seo; Chan, Park;Sun-Mi, Kim;Joon-Kyung, Choi
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.4
    • /
    • pp.75-85
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effect of intensively complex physical therapy program on pain, range of motion (ROM) and muscle function in traumatic low back injury by industrial accident. Design: Prospective study Methods: Eight patients with traumatic low back injury by industrial accident participated in this study. They were treated the intensively complex physical therapy program including daily 60 minutes therapist supervised physical therapy at 5 times a week and 30 minutes manual therapy at 5 times a week in 12 weeks. Evaluation was performed before the commencement of the training and again 4, 8 and 12 weeks. There were measured Numerical Rating Scale (NRS) for evaluating pain, ROM of trunk, and isometric muscle strength of trunk, core muscle endurance, neuromuscular control ability for evaluating muscle function. Results: NRS was significantly improved according to time (p<0.05). ROM of extension and rotation, isometric muscle strength of trunk and hip, core muscle endurance and neuromuscular control ability were significantly improved according to time (p<0.05). Conclusion: We could confirm the superiority effect of intensively complex physical therapy program on pain, ROM of trunk and muscle function in traumatic low back pain with industrial accident.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : II. Verification of Applicability (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : II. 적용성 검증)

  • Park, Chul-Soo;Mok, Young-Jin;Hwang, Seon-Keun;Park, In-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.57-66
    • /
    • 2009
  • In the preliminary investigation (Park et al., 2009), the use of compressional wave velocity and its measurement techniques were proposed as a new quality control measure for trackbed fills. The methodology follows exactly the same procedure as the density control, except the density being replaced by the compressional wave velocity involving consistently with resilient modulus of design stage. The specifications for the control also include field compaction water content of optimum moisture content ${\pm}2%$ as well as the compressional wave velocity. In this sequel paper, crosshole and resonant column tests were performed as well direct-arrival method and laboratory compressional wave measurements to verify the practical applicability of a methodology far the new quality control procedure based upon compressional wave velocity. The stress-modified crosshole results reasonably well agree with the direct-arrival values, and the resonant column test results also agree well with the field crosshole results. The compressional wave velocity turned out to be an excellent control measure for trackbed fills both in the theoretical and practical point of view.

Design of ICT based Protected Horticulture for Recovering Natural Disaster (ICT기반 시설원예 재해 경감장치 설계)

  • Lee, Meong-Hun;Yoe, Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.10
    • /
    • pp.373-382
    • /
    • 2016
  • Under the Agricultural technology is influenced from climate that is requisite of seasonal. So this system will cover the problems and develop the agricultural industry as well. So far, the agricultural industry is developing however, it has the points of the weakness because of natural disasters such as wind risk and heavy snow. This paper designs system to change vinyl on the greenhouse. This is a preliminary study for the real-time feedback control of greenhouse. The study developed a wireless IoT sensor system based on authentic technology capacities, to integrate with the protected horticulture Management System. These system was used to evaluate the levels of the snow cover and wind through IoT devices. The existing greenhouse uses the warm water to clear snow or to change methods. This system will recover by changing the vinyl which is covered outside of the greenhouse. The points of the system is changing vinyl to spin pipe. It is contained extra vinyl. The effects of this system are minimized labor protected crops from natural disasters. For this purpose, the study first developed a wireless IoT sensor unit that integrates an MEMS device and wireless communication module. Also, the study developed an operating program that enables real-time response measurement. It will help operational and maintenance greenhouse as a result.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

The Effects of Case-Based Learning (CBL) on Problem Solving Ability and Academic Self-efficacy in Nursing Students (사례기반학습을 적용한 수업이 간호대학생의 문제해결능력과 학업적 자기효능감에 미치는 효과)

  • Jin Hye Kyung;Yun Mi Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1143-1149
    • /
    • 2023
  • The purpose of this study was to the effects of case-based learning (CBL) on problem solving ability and academic self-efficacy in nursing students and was a quasi-experimental study with a one-group pretest-posttest design. The subjects of this study were 121 grade 4 students, and the data collection period was from Aprill 24 to June 12, 2023. The research procedure was scenario development, preliminary investigation, application of case-based learning classes, and follow-up investigation, and the CBL was conducted for 2 weeks, 50 minutes per week. The general characteristics of the subjects were obtained by frequency, percentage, mean, and standard deviation and the effects of CBL on problem solving ability and academic self-efficacy was tested using a paired t-test. The results of this study showed that nursing students' problem solving ability (t=-5.70, p<.001) and academic self-efficacy (t=-3.25, p<.002) improved after applying CBL compared to before applying it. We suggest the use of case-based learning as a strategy to improve problem-solving skills and academic self-efficacy in nursing education. In the future, follow-up research is needed to verify the effectiveness by developing and applying step-by-step clinical cases at an appropriate level according to the learning content of nursing major subjects by grade.

An Exploratory Study on ChatGPT's Performance to Answer to Police-related Traffic Laws: Using the Driver's License Test and the Road Traffic Accident Appraiser (ChatGPT의 경찰 관련 교통법규 응답 능력에 대한 탐색적 연구 - 운전면허 학과시험과 도로교통사고감정사 1차 시험을 대상으로 -)

  • Sang-yub Lee
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study conducted preliminary study to identify effective ways to use ChatGPT in traffic policing by analyzing ChatGPT's responses to the driver's license test and the road traffic accident appraiser test. I collected ChatGPT responses for the driver's license test item pool and the road traffic accident appraiser test using the OpenAI API with Python code for 30 iterative experiments, and analyzed the percentage of correct answers by test, year, section, and consistency. First, the average correct answer rate for the driver's license test and the for road traffic accident appraisers test was 44.60% and 35.45%, respectively, which was lower than the pass criteria, and the correct answer rate after 2022 was lower than the average correct answer rate. Second, the percentage of correct answers by section ranged from 29.69% to 56.80%, showing a significant difference. Third, it consistently produced the same response more than 95% of the time when the answer was correct. To effectively utilize ChatGPT, it is necessary to have user expertise, evaluation data and analysis methods, design a quality traffic law corpus and periodic learning.