• Title/Summary/Keyword: Preheating Effect

Search Result 94, Processing Time 0.024 seconds

Studies on the Processing of Rapid- and Low Salt-Fermented Liquefaction of Sardine (Sardinops melanoslicta)(I) -Changes in Quility during Preheating of Chopped Whole Sardine and Optimum Conditions of Crude Enzyme Activity in Viscera- (저식염 속성 정어리 발효 액화물 가공에 관한 연구(I) -효소의 최적활성조건 및 마쇄육 예열처리중의 품질변화-)

  • Park, Choon-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.14 no.5
    • /
    • pp.455-460
    • /
    • 1999
  • In order to establish the processing condition of salt-fermented liquefaction of sardine (Sardinops melanoslicta), effect of temperature, pH value, and concentration of salinity on crude enzyme activity of sardine viscera were investigated. The optimum temperature range of crude enzyme activity in sardine viscera was $45{\sim}50^{\circ}C$ and the optimum pH value of it was 9.8. According to the concentration of salinity increased the crude enzyme activity in sardine viscera decreased. The relationship between concentration of salinity (X) and the crude enzyme activity (Y) in sardine viscera is shown as follows; Y=-0.01363X+0.7676 (r=-0.88). For the purpose of processing conditions of rapid- and low salt-fermented liquefaction of sardine, changes of viable cell count, histamine content, and volatile basic nitrogen (VBN) in the chopped whole sardine with 8% NaCl during preheating process at $40^{\circ},\;45^{\circ}$ and $50^{\circ}C$ for 48 hrs were analyzed. During preheating, initial viable cell counts of chopped whole sardine were $10^{4-7}/g$, but they decreased $10^{1-5}/g$ after 48 hrs. Histamine contents during preheating process at $40^{\circ}\;and\;45^{\circ}C$ were gradually increased, whereas at $50^{\circ}C$ were almost the same level after 48 hrs. VBN contents were continuously increased during preheating, but preheating at $50^{\circ}C$ samples were lower level than that of $40^{\circ}\;and\;45^{\circ}C$ ones. For the purpose to accelerate the fermentation and liquefaction of chopped whole sardine, preheating at optimum temperature of crude enzyme activity for 48 hrs was useful processing method and the contents of viable cell count, histamine, and VBN were safety level for food sanitation.

  • PDF

Effects of Red Bean (Vigna angularis) Protein Isolates on Rheological Properties of Microbial Transglutaminase Mediated Pork Myofibrillar Protein Gels as Affected by Fractioning and Preheat Treatment

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.671-678
    • /
    • 2016
  • Fractioning and/or preheating treatment on the rheological properties of myofibrillar protein (MP) gels induced by microbial transglutaminase (MTG) has been reported that they may improve the functional properties. However, the optimum condition was varied depending on the experimental factors. This study was to evaluate the effect of red bean protein isolate (RBPI) on the rheological properties of MP gels mediated by MTG as affected by modifications (fractioning: 7S-globulin of RBPI and/or preheat treatment (pre-heating; 95℃/30 min): pre-heating RBPI or pre-heating/7S-globulin). Cooking yields (CY, %) of MP gels was increased with RBPI (p<0.05), while 7S-globulin decreased the effect of RBPI (p<0.05); however, preheating treatments did not affect the CY (p>0.05). Gel strength of MP was decreased when RBPI or 7S-globulin added, while preheat treatments compensated for the negative effects of those in MP. This effect was entirely reversed by MTG treatment. Although the major band of RBPI disappeared, the preheated 7S globulin band was remained. In scanning electron microscopic (SEM) technique, the appearance of more cross-linked structures were observed when RBPI was prepared with preheating at 95℃ to improve the protein-protein interaction during gel setting of MP mixtures. Thus, the effects of RBPI and 7S-globulin as a substrate, and water and meat binder for MTG-mediated MP gels were confirmed to improve the rheological properties. However, preheat treatment of RBPI should be optimized.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (I) - Preheating Characteristics and Oxidation Behaviors of Silicon Nitride Ceramics with Machining Parameters - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (I) - 공정변수에 따른 질화규소의 예열특성 및 산화거동 -)

  • Kim, Jong-Do;Lee, Su-Jin;Shu, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Silicon nitride is widely used as an engineering ceramics because it has high strength, abrasion resistance and corrosion resistance even at high temperature. However, machining of silicon nitride is difficult due to its high hardness and brittleness. Laser assisted machining(LAM) allows effective cutting using CBN tool by locally heating the cutting part to the softening temperature of YSiAlON using the laser beam. The effect of preheating depending on process parameters were studied to find out the oxidation mechanism. If silicon nitride is sufficiently preheated, the surface is oxidized and $N_2$ gas is formed and escapes from the material, thereby making the cutting process more advantageous. During laser preheating process before machining, high temperature results in strong oxidation which makes the bloating, silicate layers and micro cracks. Using the results of these experiments, preheating characteristics and oxidation behavior were found out.

Study on Temperature Effect of Difficulty-to-Cut Material in Laser Heat Treatment Process (레이저 열원을 이용한 난삭재 열처리 공정의 온도 효과에 관한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • Recently, Difficult-to-cut materials are used in many manufacturing industry. But the difficult-to-cut materials are difficult-to-cutting process. So difficult to cut material cutting process was used after heat treatment through preheating for easy cutting process. In this study, Inconel 625 was preheating using laser heat source in computer simulation. Laser heat source temperature applied $1290^{\circ}C$ that suitable preheating temperature for Inconel 625. And temperature effects such as temperature distribution for moving heat source studied apply to similar actual process condition. Simulation results for heat treatment effects through temperature distribution verified.

A Study on the Effect of Preheating in Cold AC Arc Welding Process of the Cast Iron (주철의 냉간 시공 교류아크용접에서 예열효과에 관한 연구)

  • Kim, Jin-Gyeong;Kim, Young-Sik;Yu, Dae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.729-735
    • /
    • 2007
  • AC cold arc welding process with AWS E Ni-CI and NiFe-CI is sometimes used to repair damaged cast iron parts in diesel engine room. But if some difference in hardness on welding zones, repaired parts would be cracked in a short. To overcome this default. this study is performed on varying preheating temperature of welding parts, selecting welding rod etc. Experimental results showed that difference in hardness on welding zones at $200^{\circ}C$ was less than $100^{\circ}C$ and less low current than high current. From this study we could conclude that repair welding at $200^{\circ}C$ preheating and low current as possible as welding in damaged cast iron parts was a little difference in hardness on welding zones.

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

Tensile Test for Lap Welded Joints of Rebars(SD400) (일반철근(SD400) 용접 겹침이음 인장실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.570-576
    • /
    • 2018
  • In reinforced concrete structures, the joints of ordinary rebars are usually lap joints, which are bound by binding wires with rebars, and mechanical joints by couplers. In domestic design standards (concrete design code), welded lap joints are restricted for ordinary rebars, but overseas standards allow welded lap joints of ordinary rebars through pre-heating. This study investigated the domestic and international standards/criteria and evaluated the fracture strength by performing the tensile test on the lap welded joint of SD400 grade rebars, which is used the most in the construction sites. The weld length of the specimen for weld lap joints is based on the minimum weld length (8d) given in the KS standard (KS B ISO 17660-1). According to AWS D1.4, the preheating temperature was set to $150^{\circ}C$ for D19 and below, and $260^{\circ}C$ for D22 and above. In the test results, the tensile strength of rebars with welded lap joints exceeded the required strength (125% of the yield strength) according to the concrete design code. To analyze the effect of preheating, the tensile strength of the welded rebars after preheating was not significantly different from that of the welded rebars without preheating. The carbon equivalent content (Ceq) of the rebars used in the test was 0.45% or less. Under AWS D1.4, no preheating is required if the carbon equivalent is less than 0.45%. All specimens with a welded lap length of 8d failed by a bar fracture. The effect of preheating was confirmed to be insignificant due to the low carbon equivalent of the rebar.

The Effect of Pressing Type and Foaming Agent on the Microstructural Characteristic of Al Foam Produced by Powder Compact Processing (가압형태와 발포제가 분말성형 발포법에 의해 제조된 알루미늄 발포체의 미세구조에 미치는 영향)

  • Choi, Ji Woong;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2021
  • In this study, the effect of pressure type and foaming agent on the microstructural change of Al foam produced by powder compact processing was investigated. Better foaming characteristic is easily obtained from extrusion process with strong plastic deformation and preheating than that by uniaxial pressing with preheating. In current powder compact foaming process using TiH2/MgH2 mixture as a foaming agent, a temperature of 670℃ and addition of 30% MgH2 in TiH2 foaming agent was chosen as the most suitable foaming condition. The aluminum (Al) foams with maximum porosity of around 70%, relatively regular pore size and distribution were successfully produced by means of the powder metallurgy method and extrusion process.

Quality Improvement of Recycled Aggregates from Waste Concrete by the heating and grinding

  • Kim, Hyung-Seok;Han, Gi-Chun;Ahn, Ji-Whan;Park, Jae-Seok;Kim, Hwan;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • To examine the grinding effect through preheating of waste concrete as a way of retrieving coarse aggregates from waste concrete, the removal rates of cement mortar and paste of both recycled aggregates and heated and grinded ones were investigated. As the preheating temperature increased, the removal rate of cement mortar from waste concrete was raised, and this kind of removal hardly affected the abrasion rate and specific gravity of aggregates. On the other hand, when it was treated over 40$0^{\circ}C$ of preheating temperature, the absorptance was reduced to less than 2.17, and cement mortar was effectively separated from waste concrete. It could meet the Korean Standards on recycled aggregates for concrete, and it is expected to expand the scope of utilization by making it possible to retrieve the aggregates which have the properties close to natural aggregates.

  • PDF