• 제목/요약/키워드: Preform

검색결과 465건 처리시간 0.022초

Al7050합금의 단조 시제품 제작에 관한 연구 (A Study on the Forging Prototype Manufacture of Aluminium 7050 Alloys)

  • 강성기;이재근
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load. As the results of FEM simulation by using DEFORM-3D, the simulated forging loads were 2,200ton in the case of a machined bar which is machined from 65mm to 60mm diameter, and below 1,900ton in the case of machined preform, respectively. The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the case of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

TR 단조를 위한 유도 가열 공정의 전력제어 (Power Control of Induction Heating Process for TR forging)

  • 송민철;주성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.230-233
    • /
    • 2004
  • The purpose of this study is to establish the optimal induction heating conditions of various preform types used for TR forging. The finite element model coupled electro-magnetic and transient heat transfer was employed to evaluate the distribution of temperature at the billet. Power control method was applied to control temperature of preform in induction heating because TR forging is not a continuous process. Power schedule that consists of heating and holding stage was suggested. In heating stage, power is inversely proportional to diameter of preform but the time of heating stage is directly proportional to the diameter of preform. But, in holding stage, the required power for thermal equilibrium per unit volume of the billet decreases with an increase in a diameter of billet due to the increase of efficiency.

  • PDF

냉간 단조 금형의 마멸 감소를 위한 예비성형체 설계방법 (Methodology of Perform Design for Reducing Tool Wear in Cold Forging)

  • 이진호;고대철;김태형;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.164-167
    • /
    • 1997
  • The die wear is one of the main factors affecting die accuracy and tool lifetime. It is desired to reduce die wear by developing simulation method to predict wear based on process parameters, and then optimize the process. Therefore, this paper describes disign methodology of preform for minimizing wear of finisher die in multi-stage cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging process is analyzed. In order to obtain preform to minimize die wear, the FPS algorithm is applied and the optimal preform shape is found from iterative deformation analysis and wear calculation.

  • PDF

개방형 금형을 이용한 유리 렌즈 성형 해석 (Finite Element Analysis of Glass Lens Forming Process Using Open Die)

  • 나진욱;임성한;오수익;전병희
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.296-301
    • /
    • 2003
  • Though a glass tens has outstanding optical performance, it has not been widely used because manufacturing process shows poor productivity and high cost. However, press-forming method of glass lens overcomes these disadvantages with mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform is precisely measured in order to prevent incomplete products and to increase in life of die. The present. paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameters of open die are selected on the basis of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

평면변형 단조에서의 예비성형체 설계에 관한 연구 (A Study on Preform Design in Plane-Strain Forging)

  • 이종헌;강건;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.678-685
    • /
    • 1999
  • A UBET program is developed for determining flash the optimum sizes of preform and initial billet in plane-strain closed-die forging. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process the optimum dimensions of initial billet and preform are determined from the final-shape data based on flash design. Experiments are carried out with pure plasticine billets ar room temperature. The theoretical predictions of forging load and flow pattern are in good agree-ment with the experimental results.

  • PDF

주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구 (A Study on the Development of Large Aluminum Flange using Casting/Forging Process)

  • 배원병;왕신일;서명규;조종래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.905-909
    • /
    • 2001
  • The significance of casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from $420^{\circ}C$ to $450^{\circ}C$. The suitable strain rate was 1.5 $sec^{-1}$. The deformation amount of a preform in a forging process is key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of cast preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for the low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeds 0.7. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

  • PDF

금속복합재료용 고부피분율 SiC분말 예비성형체의 제조공정과 특성 (Fabrication Processes and Properties of High Volume Fraction SiC Particulate Preform for Metal Matrix Composites)

  • 전경윤
    • 한국분말재료학회지
    • /
    • 제5권3호
    • /
    • pp.184-191
    • /
    • 1998
  • The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.

  • PDF

Al$_2$O$_3$/Al 복합체 제조시 용융 알루미늄의 치환반응에 미치는 금속 마그네슘의 영향 (Effects of Metal Mg on Replacement Reaction of Molten Al for Fabrication of $Al_2$O$_3$//Al Composites)

  • 정두화;배원태
    • 한국세라믹학회지
    • /
    • 제35권1호
    • /
    • pp.23-32
    • /
    • 1998
  • 전융실리카 분말로 소결하여 만든 sihca preform을 마그네슘이 함유된 용융 알루미늄에 침적시킨후 공기중에서 반응시켜 Al2O3/Al 복합체를 제조하였다. 복합체 제조시 반응온도의 변화에 대해 용융 알루미늄의 침투거동을 조사한 결과 3가지 영역, 즉 저온영역(75$0^{\circ}C$-85$0^{\circ}C$), 중온영역(90$0^{\circ}C$-95$0^{\circ}C$), 고온영역(100$0^{\circ}C$$\leq$)으로 구분되었다. 저온영역에서는 반응온도에 비례해서 침투속도가 증가하였으나, 중간온도 영역은 치환반응에 의해 생성된 알루미나의 상전이에 따른 영향으로 저온영역인 85$0^{\circ}C$에서보다 오히려 침투속도가 감소하였다. 고온영역중 100$0^{\circ}C$이상에서 침투가 일어나지 않는 것은 용융 알루미늄중의 마그네슘이 먼저 실리카와 반응하여 silica preform의 표면에 치밀한 스피넬층을 형성하기 때문으로 판명되었다.

  • PDF

알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구 (A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process)

  • 배원병;강정윤;이영석;이성모;홍창호
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF