• 제목/요약/키워드: Preform

검색결과 465건 처리시간 0.025초

재료의 변형거동 추적을 통한 예비형상 설계 (Preform Design Technique by Tracing the Material Deformation Behavior)

  • 홍진태;박철현;이석렬;양동열
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

Comparison of Injection Molding Characteristics according to Thickness Variations of Preform for PET bottle

  • Kim, Nam Hyun;Woo, In Young;Nam, Kyung Woo;Yeon, Baek Rim;Kim, Mi Rae;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.164-171
    • /
    • 2021
  • Due to the problem of environmental pollution by plastics, it is necessary to decrease their consumption. In the case of PET bottles, it is essential to reduce the thickness of the bottle for the reduction of plastic used. For manufacturing PET bottles with reduced thickness, it is a prerequisite to design a preform with reduced thickness and study its molding capability. In this study, the injection molding capability was investigated after reducing the body thickness of the preform to 15% and 20%, respectively, for the two preform models currently in use. Injection molding analysis was performed on the existing models and on the models for reduced weight, under the molding conditions of the existing models. Using the computed results, temperature distribution, pressure distribution, deformation and clamping force were compared. Based on the analysis, the injection conditions of the preform model with less thickness were discussed.

PET 병용 프리폼 사출성형에서 잔류응력과 수축 최소화를 위한 성형조건의 연구 (Investigation of the Molding Conditions to Minimize Residual Stress and Shrinkage in Injection Molded Preform of PET Bottle)

  • 조성환;홍진수;류민영
    • 폴리머
    • /
    • 제35권5호
    • /
    • pp.467-471
    • /
    • 2011
  • PET병은 프리폼(preform)을 사출성형한 후 이를 블로우 성형기에 이송시켜 블로잉하여 성형된다. 내열을 요구하는 병 즉, 주스나 곡류음료용 PET병은 목 부분(neck 또는 thread 부분)에 내열성을 부여하기 위해 프리폼 성형 후 블로잉하기 전에 목 부분을 결정화시킨다. 그러나 사출성형품에 존재하는 잔류응력이 결정화를 방해하기 때문에 프리폼 목 부분의 충분한 결정화를 위해 사출 후 프리폼을 열처리(annealing)한다. 이 열처리는 잔류응력을 해소시키기 위해서 수행하는데 사출 시 성형조건의 최적화를 통하여 잔류응력을 최소화한다면 열처리 시간을 단축시킬 수 있다. 본 논문에서는 사출 시 프리폼에 형성되는 잔류응력을 최소화하고 치수정밀도를 유지하기 위한 연구로 CAE 해석을 통하여 최적 사출조건을 제시하였다. 성형조건별 잔류응력 및 수축률의 변화를 관찰하고 이를 최소화시키는 성형조건을 찾기 위해 실험계획법을 적용하였다. 사출온도, 보압크기, 그리고 사출시간을 인자로 하여 최적의 성형조건을 결정하였다. 잔류응력에 영향을 주는 인자는 사출온도와 사출시간 순으로 나타났고 수축률에 영향을 주는 인자는 사출온도로 나타났다. 본 연구에서 결정한 최적 조건에서 최대 잔류응력, 잔류응력의 분포, 그리고 수축률이 기존 조건에 비해 각각 22%, 40%, 그리고 25% 감소하였다.

반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화 (Optimization of preform mold injection molding process for hemispheric plastic structure fabrication)

  • 박정연;고영배;김동언;하석재;윤길상
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

반응소결법에 의해 제조된 Fe-Al합금 예비성형체의 특성에 미치는 제인자의 영향 (Effects of Several Factors on the Characteristics of Fe-Al Alloy Preform Manufactured by Reactive Sintering Process)

  • 주형곤;박성혁;주성민;최답천
    • 한국주조공학회지
    • /
    • 제17권1호
    • /
    • pp.58-66
    • /
    • 1997
  • The main aim of the present study is to investigate the effects of several processing parameters on the characteristics of Fe-Al alloy preform manufactured by reactive sintering process. The processing parameters include preform composition of 25, 40, 50, 60 and 75at.%Al, compacting pressure of 10, 20 and $30kg/cm^2$, and mean Al particle size of 29, 66 and $187{\mu}m$. Mean Fe particle size was $39{\mu}m$. The density of preform processed under same compacting pressure was not affected by changing Al composition. The preform with Al compositions of 25, 40, 50 and 60at.% Al swelled after reactive sintering process, thus having lower density than the green compacts. The preform with Al compositions of 75at.%Al, however, shrinked after reactive sintering process, thus having higher density than the green compacts. Ignition temperature increased with increasing compacting pressure, and increased with increasing Al composition at the fixed compacting pressure. And adiabatic temperature decreased with increasing compacting pressure at the fixed Al composition, and increased with increasing Al composition at the fixed compacting pressure. The size of compound particles increased with increasing Al composition. Especially, The size of compound particles increased largely in the case of 75at.%Al. It was observed that 50at.%Al preform have three dimentional network structure having a homogeneous and fine decreasing Al particle size.

  • PDF

Y2O3 첨가 탄소 프리폼에 Si 용융 침투에 의해 제조한 반응 소결 탄화규소 (RBSC Prepared by Si Melt Infiltration into the Y2O3 Added Carbon Preform)

  • 장민호;조경식
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.51-58
    • /
    • 2021
  • The conversion of carbon preforms to dense SiC by liquid infiltration is a prospectively low-cost and reliable method of forming SiC-Si composites with complex shapes and high densities. Si powder was coated on top of a 2.0wt.% Y2O3-added carbon preform, and reaction bonded silicon carbide (RBSC) was prepared by infiltrating molten Si at 1,450℃ for 1-8 h. Reactive sintering of the Y2O3-free carbon preform caused Si to be pushed to one side, thereby forming cracking defects. However, when prepared from the Y2O3-added carbon preform, a SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C → SiC reaction at 1,450℃, 3C and 6H SiC phases, crystalline Si, and Y2O3 were generated based on XRD analysis, without the appearance of graphite. The RBSC prepared from the Y2O3-added carbon preform was densified by increasing the density and decreasing the porosity as the holding time increased at 1,450℃. Dense RBSC, which was reaction sintered at 1,450℃ for 4 h from the 2.0wt.% Y2O3-added carbon preform, had an apparent porosity of 0.11% and a relative density of 96.8%.

방전 플라즈마 소결법에 의한 다공성 육티탄산 칼륨 휘스커 프리폼의 제조 (Preparation of Porous K2Ti6O13 Whisker Preform by Spark Plasma Sintering)

  • 이장훈;조동철;조원승;이지환
    • 한국세라믹학회지
    • /
    • 제39권12호
    • /
    • pp.1197-1202
    • /
    • 2002
  • 방전 플라즈마 소결법을 이용하여 건전한 강도를 갖는 다공성 육티탄산 칼륨 휘스커 프리폼을 제조하기 위해서, 여러 소결온도 조건하에서 휘스커 프리폼을 제조한 후 기공률과 압축강도 등을 조사하였다. 그 결과, 소결 온도 900∼950${\circ}C$, 유지시간 10분, 압축하중 40 MPa, 승온속도 50${\circ}C$/min, on-off pulse type 12:2의 조건에서 높은 기공률을 갖는 프리폼을 제조할 수 있었다. 이상의 최적조건에서 제조한 프리폼은 기공률이 15∼37% 범위임에도 불구하고 174∼266 MPa의 비교적 높은 압축강도를 나타내었다. 이와 같은 강도의 향상은 휘스커간의 스파크 플라즈마 방전 및 자기 발열작용의 영향에 기인한 것으로 생각된다. 900${\circ}C$ 이하에서 제조한 휘스커 프리폼의 강도 레벨은 80∼100MPa로 900∼950${\circ}C$의 온도조건에서 제조한 프리폼에 비해 2배 이하의 낮은 값을 나타내었다. 1000 ${\circ}C$에서의 압축강도는 523 MPa로 가장 높은 강도값을 나타내었으나, 약 5%의 낮은 기공률을 나타내었다. 이상의 결과로부터, 비교적 강도가 높고 다공성의 티탄산 칼륨 휘스커를 제조하는데 있어 방전 플라즈마 소결법이 효과적인 것으로 생각된다.

주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구 (A Study on the Development of Large Aluminum Flange Using Casting/Forging Process)

  • 배원병;왕신일;서명규;조종래
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1438-1443
    • /
    • 2001
  • The significance of the casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to reduce press capacity and material cost. Firstly, a hot compression test was performed with cast cylindrical billets in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from 420$\^{C}$ to 450$\^{C}$. The suitable strain rate was 1.5 sec(sup)-1. The deformation amount of a preform of a preform in a forging process is a key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of case preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeded 0.7. From the result of FE analysis, optimal configurations of the cast preform and the die were designed for a large flange. The filling and solidification analysis for a sound cast-preform was carried out with MAGMA soft. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

Optimizing Electrical and Mechanical Properties of Reaction-Sintered SiC by using Different-Sized SiC Particles in Preform

  • Jeon, Young-Sam;Shin, Hyun-Ho;Park, Jin-Soo;Kang, Sang-Won
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.439-442
    • /
    • 2008
  • A series of reaction-sintered SiC was fabricated from preforms with varying volume fractions of two resin-coated SiC particles of different sizes (63 and $18{\mu}m$). The electrical resistivity and mechanical strength were eventually optimized at the small particle volume fraction of $0.3{\sim}0.4$, at which point the porosity of the preform was minimized. This study experimentally proves that additional processes after the formation of the preform, such as silicon infiltration and reaction sintering, do not apparently alter the optimum volume fraction of the preform packing, predicted by an existing analytical model based on solid packing. Thus, the volume fraction of particles of different sizes can be determined practically through the solid packing model to fabricate RSSCs with optimal properties.