• 제목/요약/키워드: Preform

검색결과 465건 처리시간 0.022초

증기터빈 티타늄 블레이드의 단조공정 개발에 관한 연구 (A Study on the Development of Forging Process for Steam Turbine Titanium Blade)

  • 김윤환;조종래;정호승;박희천;이낙규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.354-357
    • /
    • 2005
  • When Ti-6Al-4V is used in long steam turbine blades, the main issues are how to improve the fatigue strength as a problem of internal quality and how to forge the thinnest possible blades as problem of dimensional precision. To assure an excellent fatigue strength, it is important to make the two phase fine and equiaxial structure by providing enough plastic deformation in the two phase$(\alpha\;phase/\beta\;phase)$ temperature region. Accordingly, it needs to predict that forging temperature, preform design and forging velocity in forging process. To achieve this end, the two steps forging process was suggested to forge the thin and twisted blades with a precision hammer considering die forces and metal flow. Two steps forging process consists of the flattening forging process and finishing forging process. Process in forging of a 1016mm long steam turbine blade is designed by the finite element method. This study attempts to derive systematic design procedures for process design in the forging. Forging parameters was analyzed in two-dimensional plane-strain simulation and two steps forging process carried out in three-dimensional simulation. Consequently, optimal forging process parameters of long steam turbine blades in Ti-6Al-4V with a high dimensional precision are selected in the hammer die forging.

  • PDF

선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계 (Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine)

  • 황범철;이우형;배원병;김철
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

The Development of Double Clad Fiber and Double Clad Fiber Coupler for Fiber Based Biomedical Imaging Systems

  • Ryu, Seon-Young;Choi, Hae-Young;Ju, Myeong-Jin;Na, Ji-Hoon;Choi, Woo-June;Lee, Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.310-315
    • /
    • 2009
  • We report the fabrication of double clad fiber (DCF) and DCF coupler, suitable for fiber based imaging systems requiring the dual-channel transmission. Unlike the conventional DCF which uses silica for both cladding layers, the proposed DCF uses a low-index polymer for its outer-cladding layer coated over the conventional silica inner-cladding layer. The DCF is drawn with a conventional SMF preform but a low-index polymer coating is used for both jacket and outercladding of the fiber. To achieve the cladding mode coupling, a DCF coupler is fabricated by simply twisting two pieces of the proposed DCF after removing the polymer-coating at contacting regions. A cladding mode coupling ratio of 30% was achieved with a contact length of 16 cm. The proposed DCF and DCF coupler were employed in a composite optical coherence tomography (OCT) and fluorescence spectroscopy (FS) system, and both OCT images and FS signal from a plant tissue are measured simultaneously.

Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration

  • Lee, Ho Wook;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.453-460
    • /
    • 2019
  • To reduce residual pores of composites and obtain a dense matrix, SiCf/SiC composites were fabricated by chemical vapor deposition (CVI) using SiC nanorods. SiC nanorods were uniformly grown in the thickness direction of the composite preform when the reaction pressure was maintained at 50 torr or 100 torr at 1,100℃. When SiC nanorods were grown, the densities of the composites were 2.57 ~ 2.65 g/㎤, higher than that of the composite density of 2.47 g/㎤ for non-growing of SiC nanorods under the same conditions; grown nanorods had uniform microstructure with reduced large pores between bundles. The flexural strength, fracture toughness and thermal conductivity (room temperature) of the SiC nanorod grown composites were 412 ~ 432 MPa, 13.79 ~ 14.94 MPa·m1/2 and 11.51 ~11.89 W/m·K, which were increases of 30%, 25%, and 25% compared to the untreated composite, respectively.

S-RIM을 이용한 Glass Fiber Chopped Strand Mat 강화 p-DCPD 복합재료 제작 및 수치해석을 통한 공정 시간 예측 (Manufacturing and Numerical Analysis of Glass Fiber Chopped Strand Mat Reinforced p-DCPD Composites Processed by S-RIM)

  • 유형민;엄문광;최성웅
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.629-634
    • /
    • 2019
  • Dicyclopentadiene is a low viscosity resin which forms a poly-dicyclopentadiene rapidly through ring opening metathesis polymerization (ROMP). This poly-dicyclopentadiene has outstanding properties of low-temperature, water and impact resistances. Due to these advantages, military and offshore structures try to apply the DCPD composites by using liquid composite molding process. In this study, 14%, 38% volume fraction fiber glass strand mat reinforced p-DCPD composites processed by structural reaction injection molding (S-RIM) which has resin-catalsyt mixing head and glass fiber preform in the mold. Additionally, S-RIM numerical analysis was conducted to predict the process time depending on fiber volume fraction and mold temperature. The process time is shorter when it has the lower fiber volume fraction or the higher mold temperature. At higher mold temperature, it is necessary to set the maximum mold temperature considering the resin curing time.

광섬유 인선 공정에 의해 생성된 실리카 광섬유내 점결함 (Fiber Drawing Induced Defects in Silica Optical Fiber)

  • 안병길;이종원;김효태
    • 한국세라믹학회지
    • /
    • 제40권11호
    • /
    • pp.1102-1105
    • /
    • 2003
  • 광섬유 인선공정에 의해 생성된 실리카 유리내 점결함을 조사하였다. 본 연구에서는 특히 OH기가 적은 실리카 광섬유내 광섬유 인선 공정이 유발하는 oxygen deficient center와 E' center를 중점적으로 조사하였다. 광섬유 인선공정에 의해 oxygen deficient center 와 E’ center가 생성되었다는 것을 광학적 흡수대와 electron spin resonance를 이용하여 밝힐 수 있었다. 실리카 광섬유모재에서 가느다란 광섬유로 변환하는 neck-down 부분에서 점결함의 변화를 조사하였다. 점결함은 neck-down 부분에서 생성되며, 중심부분 보다 가장자리 부분에서 더 많은 점결함이 생성되었음을 알 수 있었다.

UBET를 이용한 축대칭 형단조 해석 (Analysis of axisymmetric closed-die forging using UBET)

  • 김동원;김헌영;신수정
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.337-344
    • /
    • 1989
  • 본 연구에서는 플래쉬(flash)를 가진 축대칭 리브-웨브형(rib-web type) 제품의 형단조가공을 해석하기 위한 UBET 프로그램을 개발하고 변형중의 경계 조건처리를 다르게 한 세 가지 유동모델에 대하여 소재의 유동상태와 단조하중을 계산하여 효과적인 유동모델을 제시하였다. 또한 체적은 같으나 반지름과 높이의 비가 다른 몇 가지 초기소재 형상에 대하여 변형에 따른 소재의 다이충만도 및 하중을 비교하여 적절한 초기소재의 형상을 찾고자 하였다. 본 연구에서 제시한 유동모델의 효율성을 검증하기 위하여 플라스씬(plasticine) 소재를 사용한 실험과 그 결과를 비교, 분석하였다.

습식법으로 제조된 BN 중간층을 가진 Cf/SiC 복합재의 제조 및 물성 평가 (Fabrication and Characterization of Cf/SiC Composite with BN Interphase Coated by Wet Chemical Process)

  • 구준모;김경호;한윤수
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, we developed the h-BN interphase for ceramic matrix composites (CMCs) through a wet chemical coating method, which has excellent price competitiveness and is a simple process as a departure from the existing high cost chemical vapor deposition method. The optimum condition for nitriding an h-BN interphase using boric acid and urea as precursors were derived, and the h-BN interphase coating through a wet method on a carbon preform of 2.5 D was conducted to apply the optimum conditions to the CMCs. In order to control the coating property via the wet coating method, four parameters were investigated such as dipping time of the specimen in the precursor solution, the ratio of boric acid and urea in the precursor, the concentration of solution where the precursor was dissolved, and the cycle of dipping and dry process. The CMCs was fabricated through polymer impregnation and pyrolysis (PIP) processes and a three-point flexural strength test was conducted to verify the role of the coated h-BN interphase.

반응용탕단조법에 의한 $(Al_2O_3+Si)/Mg$ 하이브리드 금속복합재료의 제조 및 특성평가 (Fabrication and Properties of Reaction Squeeze Cast $(Al_2O_3+Si)/Mg$ Hybrid Metal Matrix Composites)

  • 오동현;전상혁;박익민;조경목;최일동
    • 한국주조공학회지
    • /
    • 제20권1호
    • /
    • pp.13-20
    • /
    • 2000
  • In the present study,($10%Al_2O_3+5%Si$)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, Molten Mg was infiltrated into the preform of $10%Al_2O_3+5%Si$ and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si Powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast(RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg Matrix for the squeeze cast hybrid composite. Mechanical Properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast($15%Al_2O_3$)/AZ91 Mg composite.

  • PDF

분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구 (A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming)

  • 신돈수;윤의박
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF