• Title/Summary/Keyword: Preflex beam

Search Result 12, Processing Time 0.016 seconds

Incomplete fabrication effects on represtressing preflex girders encased in concrete

  • Jeong, Euisuk;Lee, Hwan-Woo;Lee, Jaeha
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.67-77
    • /
    • 2022
  • In the current study, ordinary design of Represstessed Pre-Flex (RPF) girder by classical beam theory and numerical model taking buckled shape into consideration were compared with field-survey data to find imperfections on the RPF girder before prestressing and after preflexion. It should be noted that the ordinary design do not consider deformed shape of steel girder in RPF beam. The deformed shapes of steel girder due to the incomplete fabrication that could be caused by self-weight, preflexion misalignment, existence of lateral bracing at mid-span and stiffness of reaction frame were found using a newly developed model which was verified against a deformation survey conducted on actual RPF girder in the field. The final observed deformed shapes of RPF after concrete shrinkage and before prestressing were classified into W, C and Unsymmetric shapes in regard to both survey and analytical results. The deformation survey showed negligible amount of unwanted deformation compared to the large size of the RPF girders. The shallower width of the bottom flange of steel girder caused amount of lateral torsional buckling under self-weight and preflexion thereby affecting the unwanted final overall shape of the RPF girders. However, it was found that the unwanted deformation of RPF girders by fabrication errors even though it is negligible compared to the size of the girder, caused unsymmetrical stress contours in concrete and additional tensile stress and raise some safety issues.

Equivalent Shrinkage Strain For Steel-Concrete Composite Girder Bridges (합성거더교의 등가 건조수축 변형률)

  • Bae, DooByong;Jung, Dae Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.135-144
    • /
    • 2004
  • Since Modern bridges have a tendency to make the spans continuous and longer, the effect of concrete shrinkage and creep is very important and must be evaluated appropriately for the durability and safety of steel-concrete composite bridges. However, highway design specification in current use prescribes $180^{1\;2}$ as the final shrinkage strain. which is for less value than one resulted from many experimental researches and cause some problems in the construction of composite bridges due to the understimation of shrinkage strain. Thus, in this paper nonlinear analysis with time-steps applying the CEB-FIP(90) provision have been conducted for plate girder bridge, box girder bridge and Preflex beam bridge and the linear equivalent shrinkage strain for the design of composite bridges. which produces the stress equal to the values from the nonlinear analysis, has been calculated by comparing the results with the values following highway design specification. The results yield appropriately double values than $180^{1\;2}$ which highway design specification prescribes.