• Title/Summary/Keyword: Preference prediction

Search Result 119, Processing Time 0.029 seconds

Improving the prediction accuracy by using the number of neighbors in collaborative filtering (협력적 필터링 추천기법에서 이웃 수를 이용한 선호도 예측 정확도 향상)

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.505-514
    • /
    • 2009
  • The researcher analyzes the relationship between the number of neighbors and the prediction accuracy in the preference prediction process using collaborative filtering system. The number of neighbors who are involved in the preference prediction process are divided into four groups. Each group shows a little difference in the preference prediction. By using prediction error averages in each group, linear functions are suggested. Through the result of this study, the accuracy of preference prediction can be raised when using linear functions by using the number of neighbors in the suggested system.

  • PDF

Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System (협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법)

  • Lee, O-Joun;Baek, Yeong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.61-69
    • /
    • 2014
  • Collaborative filtering recommendation creates similar item subset or similar user subset based on user preference about items and predict user preference to particular item by using them. Thus, if preference matrix has low density, reliability of recommendation will be sharply decreased. To solve these problems we suggest Hybrid Preference Prediction Technique Using Weighting based Data Reliability. Preference prediction is carried out by creating similar item subset and similar user subset and predicting user preference by each subset and merging each predictive value by weighting point applying model condition. According to this technique, we can increase accuracy of user preference prediction and implement recommendation system which can provide highly reliable recommendation when density of preference matrix is low. Efficiency of this system is verified by Mean Absolute Error. Proposed technique shows average 21.7% improvement than Hao Ji's technique when preference matrix sparsity is more than 84% through experiment.

A Design of HPPS(Hybrid Preference Prediction System) for Customer-Tailored Service (고객 맞춤 서비스를 위한 HPPS(Hybrid Preference Prediction System) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1467-1477
    • /
    • 2011
  • This paper proposes a HPPS(Hybrid Preference Prediction System) design using the analysis of user profile and of the similarity among users precisely to predict the preference for custom-tailored service. Contrary to the existing NBCFA(Neighborhood Based Collaborative Filtering Algorithm), this paper is designed using these following rules. First, if there is no neighbor's commodity rating value in a preference prediction formula, this formula uses the rating average value for a commodity. Second, this formula reflects the weighting value through the analysis of a user's characteristics. Finally, when the nearest neighbor is selected, we consider the similarity, the commodity rating, and the rating frequency. Therefore, the first and second preference prediction formula made HPPS improve the precision by 97.24%, and the nearest neighbor selection method made HPPS improve the precision by 75%, compared with the existing NBCFA.

Improved Algorithm for User Based Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.717-726
    • /
    • 2006
  • This study is to investigate the MAE of prediction value by collaborative filtering algorithm originated by GroupLens and improved algorithm. To decrease the MAE on the collaborative recommender system on user based, this research proposes the improved algorithm, which reduces the possibility of over estimation of active user's preference mean collaboratively using other user’s preference mean. The result shows the MAE of prediction by improved algorithm is better than original algorithm, so the active user's preference mean used in prediction formula is possibly over estimated.

  • PDF

A Recommender System Model Using a Neural Network Based on the Self-Product Image Congruence

  • Kang, Joo Hee;Lee, Yoon-Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.3
    • /
    • pp.556-571
    • /
    • 2020
  • This study predicts consumer preference for social clothing at work, excluding uniforms using the self-product congruence theory that also establishes a model to predict the preference for recommended products that match the consumer's own image. A total of 490 Korean male office workers participated in this study. Participants' self-image and the product images of 20 apparel items were measured using nine adjective semantic scales (namely elegant, stable, sincere, refined, intense, luxury, bold, conspicuous, and polite). A model was then constructed to predict the consumer preferences using a neural network with Python and TensorFlow. The resulting Predict Preference Model using Product Image (PPMPI) was trained using product image and the preference of each product. Current research confirms that product preference can be predicted by the self-image instead of by entering the product image. The prediction accuracy rate of the PPMPI was over 80%. We used 490 items of test data consisting of self-images to predict the consumer preferences for using the PPMPI. The test of the PPMPI showed that the prediction rate differed depending on product attributes. The prediction rate of work apparel with normative images was over 70% and higher than for other forms of apparel.

A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation (협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구)

  • Lee, Seok-Jun;Lee, Hee-Choon
    • Information Systems Review
    • /
    • v.9 no.1
    • /
    • pp.85-103
    • /
    • 2007
  • The purpose of this study is to evaluate the performance of collaborative filtering recommender algorithms for better prediction accuracy of the customer's preference. The accuracy of customer's preference prediction is compared through the MAE of neighborhood based collaborative filtering algorithm and correspondence mean algorithm. It is analyzed by using MovieLens 1 Million dataset in order to experiment with the prediction accuracy of the algorithms. For similarity, weight used in both algorithms, commonly, Pearson's correlation coefficient and vector similarity which are used generally were utilized, and as a result of analysis, we show that the accuracy of the customer's preference prediction of correspondence mean algorithm is superior. Pearson's correlation coefficient and vector similarity used in two algorithms are calculated using the preference rating of two customers' co-rated movies, and it shows that similarity weight is overestimated, where the number of co-rated movies is small. Therefore, it is intended to increase the accuracy of customer's preference prediction through expanding the number of the existing co-rated movies.

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

A study on neighbor selection methods in k-NN collaborative filtering recommender system (근접 이웃 선정 협력적 필터링 추천시스템에서 이웃 선정 방법에 관한 연구)

  • Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.809-818
    • /
    • 2009
  • Collaborative filtering approach predicts the preference of active user about specific items transacted on the e-commerce by using others' preference information. To improve the prediction accuracy through collaborative filtering approach, it must be needed to gain enough preference information of users' for predicting preference. But, a bit much information of users' preference might wrongly affect on prediction accuracy, and also too small information of users' preference might make bad effect on the prediction accuracy. This research suggests the method, which decides suitable numbers of neighbor users for applying collaborative filtering algorithm, improved by existing k nearest neighbors selection methods. The result of this research provides useful methods for improving the prediction accuracy and also refines exploratory data analysis approach for deciding appropriate numbers of nearest neighbors.

  • PDF

The Effect of Data Sparsity on Prediction Accuracy in Recommender System (추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구)

  • Kim, Sun-Ok;Lee, Seok-Jun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.95-102
    • /
    • 2007
  • Recommender System based on the Collaborative Filtering has a problem of trust of the prediction accuracy because of its problem of sparsity. If the sparsity of a preference value is large, it causes a problem on a process of a choice of neighbors and also lowers the prediction accuracy. In this article, a change of MAE based on the sparsity is studied, groups are classified by sparsity and then, the significant difference among MAEs of classified groups is analyzed. To improve the accuracy of prediction among groups by the problem of sparsity, We studied the improvement of an accurate prediction for recommending system through reducing sparsity by sorting sparsity items, and replacing the average preference among them that has a lot of respondents with the preference evaluation value.

  • PDF

Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering (베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템)

  • 정경용;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.316-325
    • /
    • 2003
  • A user preference prediction method using an exiting collaborative filtering technique has used the nearest-neighborhood method based on the user preference about items and has sought the user's similarity from the Pearson correlation coefficient. Therefore, it does not reflect any contents about items and also solve the problem of the sparsity. This study suggests the preference prediction system using the similarity weight granted Bayesian estimated value and the associative user clustering to complement problems of an exiting collaborative preference prediction method. This method suggested in this paper groups the user according to the Genre by using Association Rule Hypergraph Partitioning Algorithm and the new user is classified into one of these Genres by Naive Bayes classifier to slove the problem of sparsity in the collaborative filtering system. Besides, for get the similarity between users belonged to the classified genre and new users, this study allows the different estimated value to item which user vote through Naive Bayes learning. If the preference with estimated value is applied to the exiting Pearson correlation coefficient, it is able to promote the precision of the prediction by reducing the error of the prediction because of missing value. To estimate the performance of suggested method, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.