• Title/Summary/Keyword: Prefabricated bar

Search Result 16, Processing Time 0.026 seconds

Implant-supported overdenture with prefabricated bar attachment system in mandibular edentulous patient

  • Ha, Seung-Ryong;Kim, Sung-Hun;Song, Seung-Il;Hong, Seong-Tae;Kim, Gy-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.254-258
    • /
    • 2012
  • Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar$^{(R)}$ is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar$^{(R)}$ was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar$^{(R)}$ system in a mandibular edentulous patient.

Early loading using tempo denture with solitary attachment system, implant supported overdenture with prefabricated bar attachment system on Mandibular edentulous patient: A case report (하악 완전 무치악 환자에서 solitary attachment를 연결한 임시 보철물로 조기 부하를 가한 후, 조립식 바를 이용한 최종 임플란트 지지 피개의치 제작증례)

  • Park, Do-Hyeon;Lee, So-Hyoun;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • The Journal of the Korean dental association
    • /
    • v.54 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • SFI-bar is prefabricated bar system and can be assembled at chairside without soldering or welding, thus reducing bone loss, costs and time. A 53-year-old male patient, who had severely absorbed mandible, hoped to wear a stable mandiblular denture. Four implants were placed in the extraction site of canine and 1st molar. Early loaded temporary denture with solitary type attachment was delivered 3 weeks after surgery. 3 month later, SFI-bar was connected and adjusted at chairside. Then, implant overdenture using SFI-bar was delivered. This case report showed that a satisfactory clinical result was achieved by 4-implant-supported overdenture using the SFI-Bar system in a mandibular edentulous patient.

  • PDF

Full mouth rehabilitation with maxillary implant overdenture using prefabricated bar attachment system: a case report (기성품 바 어태치먼트 시스템인 SFI bar를 이용한 피개의치 전악수복 증례)

  • Shin, Eun-Jung;Joo, Han-Sung;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • In conventional bar- and clip-retained overdentures, all errors during impression making and cast fabrication result in non-passive fit of bars. SFI bar is prefabricated and assembled in the patient's mouth without the use of soldering, laser welding or conventional bonding techniques, thus reducing stress transmission to, bone loss around the implants and leading to fewer errors and lower costs. A clinical case will be presented below to demonstrate the use of the SFI Bar (Stress Free on Implant Bar) to restore an severe atrophy edentulous maxilla. In this case, no lateral stress could be applied to the implants due to the telescopic design of the bar joints. However, periodic recall check is necessary and long-term clinical results are required.

Evaluation of Axial Behavior of Columns Strengthened with Different Transverse Reinforcements in Jacket Section (확대단면에서의 띠철근 배근 방법에 따른 보강 기둥의 중심 축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • The present study evaluated the effective arrangement approach of transverse reinforcement in the jacket section for seismic strengthening of reinforced concrete columns. To simulate the full-scale columns, the section dimensions were determined as $450{\times}450mm$ for non-seismic existing columns and $750{\times}750mm$ for section enlargement strengthening columns. Over-lapped channel-shape bars and prefabricated bar units were proposed for closed-hoops in the jacket section, and conventional cross-ties anchored into existing columns and V-ties were considered for the supplementary ties. Test results showed that the axial capacity of the existing column and section enlargement columns with over-lapped channel-shape hoops was similar to the nominal strength calculated using ACI 318-14 procedure whereas the section enlargement column with prefabricated bar units possessed 1.25 times higher axial capacity than the nominal prediction. Furthermore, the axial ductility ratio of the section enlargement column with prefabricated bar unit was 139% higher than that of the existing column despite the potential size effect on ductility of concrete. Thus, it can be concluded that the developed prefabricated bar unit technique is practically useful for preventing the premature buckling of longitudinal reinforcement and confining core concrete in the section enlargement strengthening columns.

Research on prefabricated concrete beam-column joint with high strength bolt-end plate

  • Shufeng, Li;Di, Zhao;Qingning, Li;Huajing, Zhao;Jiaolei, Zhang;Dawei, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.395-406
    • /
    • 2020
  • Many prefabricated concrete frame joints have been proposed, and most of them showed good seismic performance. However, there are still some limitations in the proposed fabricated joints. For example, for prefabricated prestressed concrete joints, prefabricated beams and prefabricated columns are assembled as a whole by the pre-stressed steel bar and steel strand in the beams, which brings some troubles to the construction, and the reinforcement in the core area of the joints is complex, and the mechanical mechanism is not clear. Based on the current research results, a new type of fabricated joint of prestressed concrete beams and confined concrete columns is proposed. To study the seismic performance of the joint, the quasi-static test is carried out. The test results show that the nodes exhibit good ductility and energy dissipation. According to the experimental fitting method and the "fixed point pointing" law, the resilience model of this kind of nodes is established, and compared with the experimental results, the two agree well, which can provides a certain reference for elasto-plastic seismic response analysis of this type of structure. Besides, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

BIM based Data Exchange System of Welded Wire/bar Mat for Pre-fab RC Members (BIM 기반 프리패브 부재의 용접철근매트 정보교환 시스템)

  • Jung, Jae-Hwan;Kim, Do-Hyeong;Kim, Hyun-Gi
    • Journal of KIBIM
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Reinforcing bars, a major component of the pre-fab structure, adheres to the existing on-site assembly method and attempts to develop and commercialize the technology of the pre-assembly method, but the effect is insignificant. Welded Wire / Bar Mat (WBM) has various advantages such as commercialization of rebar through machine manufacturing to improve workability, but it is different from the existing design and the construction method is different from the previous one. Therefore, to maximize the advantages of WBM and improve productivity, manufacturing, transportation, and construction from the design stage should be considered based on BIM from the initial design stage. In this paper, the concept of the design support system for the WBM was established based on the use of BIM in concrete reinforcement and the preliminary research on the WBM. WBM conversion design was performed for the existing prefabricated members, and based on this, the exchange format and system of the master prefabricated model with the WBM design data were set up. As a result of the pilot test, it was found that the traditional reinforcing bar information extracted from the master prefab model has transmitted 100% accurately. As for the WBM information, 100% of the information on the straight reinforcement was transmitted and represented, and the information on the bent reinforcement was found to have a 90% recall in the master BIM tool.

Evaluation of Axial Behavior of Strengthened Columns according to Different Peripheral Closed Hoops in Jacket Section (확대단면에서 폐쇄형 외부 띠철근 배근 방법에 따른 보강기둥의 중심축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.139-146
    • /
    • 2019
  • This study examined the effect of various arrangement methods for forming peripheral closed hoops in the jacket section on the axial behavior of section enlargement strengthening columns. Four types of peripheral closed hoops arranged in the jacket section were prepared as follows: 1) Closed connection of prefabricated bar units (column P); 2) V-clip installation across the overlapped legs of channel-type bars (column V); 3) Use of glass fiber mesh for an alternative of steel bars (column F); and 4) combination of prefabricated bar units and glass fiber mesh (column PF). The V-clip is designed to form the closed hoops in the jacket section using the overlapped channel-type bars, preventing the opening of the channel bar legs. The glass fiber mesh is to examine the feasibility to apply for closed hoops in the jacket section as an alternative for steel bars, considering the easy construction. In the jacket section of all the strengthened columns, V-ties were arranged for supplementary ties, avoiding the interruption of the existing column. The axial stiffness and strength of the strengthened columns were insignificantly affected by the arrangement methods of closed hoops in the jacket section. The axial ductility ratio of the strengthened columns P, V, and PF was enhanced more than twice of that measured in the non-seismic existing column. However, the column F exhibited a lower ductility than the other strengthened columns because of the fracture of the mesh at the ultimate strength of the column. The V-clip approach was favorable to enhance the ductility of the strengthened column, preventing the opening of the legs of channel-type bars.

Field Investigation Study of WWF Placing for the Apartment Building Construction (구조용 용접철망을 적용한 아파트 구조물의 시공성에 관한 연구)

  • 안경수;김상연;윤영호;양지수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.657-662
    • /
    • 1997
  • In these day, there have been shortage of construction workers and an increase of labor cost in our county. In order to overcome these problems, prefabricated and mechanized system of bar placing have been used in the construction fields. As a part of this tendency, welded wire fabric(WWF) reinforcement were studied several years ago. In this study, the required working hour. the labor power and the construction process of WWF reinforcement for the apartment building slabs are reported. From the result of field investigations, it is showed that the WWF reinforcement facilitates the field placing and the working time of WWF placing is saved, and then the labor cost of WWF reinforcement is less than that of the conventional bar reinforcement.

  • PDF

Wear, microleakage and plastic deformation of an implant-supported chair-side bar system

  • Mehl, Christian Johannes;Steiner, Martin;Ludwig, Klaus;Kern, Matthias
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2015
  • PURPOSE. This in-vitro study was designed to evaluate retention forces, microleakage and plastic deformation of a prefabricated 2-implant bar attachment system (SFI-Bar, Cendres+$M{\acute{e}}taux$, Switzerland). MATERIALS AND METHODS. Two SFI implant-adapters were torqued with 35 Ncm into two implant analogues. Before the tube bars were finally sealed, the inner cavity of the tube bar was filled with liquid red dye to evaluate microleakage. As tube bar sealing agents three different materials were used (AGC Cem (AGC, resin based), Cervitec Plus (CP; varnish) and Gapseal (GS; silicone based). Four groups with eight specimens each were tested (GS, GS+AGC, AGC, CP). For cyclic loading, the attachment system was assembled parallel to the female counterparts in a chewing simulator. The mean retention forces of the initial and final ten cycles were statistically evaluated (ANOVA, ${\alpha}{\leq}.05$). RESULTS. All groups showed a significant loss of retention forces. Their means differed between 30-39 N initially and 22-28 N after 50,000 loading cycles. No significant statistical differences could be found between the groups at the beginning (P=.224), at the end (P=.257) or between the loss of retention forces (P=.288). Microleakage occurred initially only in some groups but after 10,000 loading cycles all groups exhibited microleakage. CONCLUSION. Long-term retention forces of the SFI-Bar remained above 20 N which can be considered clinically sufficient. The sealing agents in this study are not suitable to prevent microleakage.

A CLINICAL EVALUATION ON THE DESIGN OF REMOVABLE PARTIAL DENTURE (국부의치 설계에 관한 임상적 연구)

  • Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.66-71
    • /
    • 1976
  • The purpose of this investigation was to evaluate the mouth preparation and design of removable partial dentures. A total of 187cases for the prefabricated partial denture frameworks in both maxillary and mandibular semi-dentulous situations (66 cases and 203 cases) was selected from this study. The evaluations of mouth preparation and design observed here involved the classification of edentulous spaces, status of abutment splinting with location, design of direct retainer and structure of maxillary major connector according to the incidence of both dental arches, ages, sexes and segment of semidentulousness. The analyzed results were as follows: 1) The order of frequency rate in removable partial denture construction was Class II (50.27%), Class I (36. 90%), Class III (10.69%), and Class IV (2.14 %). 2) The distribution on design of maxillary removable partial denture prosthesis was 33.22% and 64.11% in mandibular removable partial denture prosthesis. 3) The age distribution of removable partial denture prosthesis was prominent after40 years (41.71%). 4) The design pattern of maxillary major connectors was in order of anteroposterior bar, single palatal bar, palatal strap, U-shape connector. 5) The design pattern of direct retainer was in order of Aker's clasp, I-bar clasp, backaction clasp, cuspid universal clasp. 6) The abutment for partial denture clasp splinted between premolar and premolar and its frequency rate revealed 53.44%. 7) It seemed that the location and design of the indirect retainer showed accepatble limit.

  • PDF