• 제목/요약/키워드: Preemptive Priority

검색결과 64건 처리시간 0.026초

(N, n)-선점 재샘플링-반복 우선순위 대기행렬 ((N, n)-Preemptive Repeat-Different Priority Queues)

  • 김길환
    • 산업경영시스템학회지
    • /
    • 제40권3호
    • /
    • pp.66-75
    • /
    • 2017
  • Priority disciplines are an important scheme for service systems to differentiate their services for different classes of customers. (N, n)-preemptive priority disciplines enable system engineers to fine-tune the performances of different classes of customers arriving to the system. Due to this virtue of controllability, (N, n)-preemptive priority queueing models can be applied to various types of systems in which the service performances of different classes of customers need to be adjusted for a complex objective. In this paper, we extend the existing (N, n)-preemptive resume and (N, n)-preemptive repeat-identical priority queueing models to the (N, n)-preemptive repeat-different priority queueing model. We derive the queue-length distributions in the M/G/1 queueing model with two classes of customers, under the (N, n)-preemptive repeat-different priority discipline. In order to derive the queue-length distributions, we employ an analysis of the effective service time of a low-priority customer, a delay cycle analysis, and a joint transformation method. We then derive the first and second moments of the queue lengths of high- and low-priority customers. We also present a numerical example for the first and second moments of the queue length of high- and low-priority customers. Through doing this, we show that, under the (N, n)-preemptive repeat-different priority discipline, the first and second moments of customers with high priority are bounded by some upper bounds, regardless of the service characteristics of customers with low priority. This property may help system engineers design such service systems that guarantee the mean and variance of delay for primary users under a certain bounds, when preempted services have to be restarted with another service time resampled from the same service time distribution.

유한 및 무한 용량 대기열을 가지는 선점 우선순위 M/G/1 대기행렬 (M/G/1 Preemptive Priority Queues With Finite and Infinite Buffers)

  • 김길환
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.1-14
    • /
    • 2020
  • Recently, M/G/1 priority queues with a finite buffer for high-priority customers and an infinite buffer for low-priority customers have applied to the analysis of communication systems with two heterogeneous traffics : delay-sensitive traffic and loss-sensitive traffic. However, these studies are limited to M/G/1 priority queues with finite and infinite buffers under a work-conserving priority discipline such as the nonpreemptive or preemptive resume priority discipline. In many situations, if a service is preempted, then the preempted service should be completely repeated when the server is available for it. This study extends the previous studies to M/G/1 priority queues with finite and infinite buffers under the preemptive repeat-different and preemptive repeat-identical priority disciplines. We derive the loss probability of high-priority customers and the waiting time distributions of high- and low-priority customers. In order to do this, we utilize the delay cycle analysis of finite-buffer M/G/1/K queues, which has been recently developed for the analysis of M/G/1 priority queues with finite and infinite buffers, and combine it with the analysis of the service time structure of a low-priority customer for the preemptive-repeat and preemptive-identical priority disciplines. We also present numerical examples to explore the impact of the size of the finite buffer and the arrival rates and service distributions of both classes on the system performance for various preemptive priority disciplines.

STABILITY CONDITION OF DISCRETE-TIME $GEO^x$/G/1 QUEUE WITH PREEMPTIVE REPEAT PRIORITY

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.291-297
    • /
    • 2003
  • This paper considers discrete-time two-class Ge $o^{X/}$G/1 queues with preemptive repeat priority. Service times of messages of each priority class are i.i.d. according to a general discrete distribution function that may differ between two classes. Completion times are derived for the preemptive repeat identical and different priority disciplines. By using the completion time, the stability condition for our system is investigated.d.

엄격한 T-축출 우선순위 대기행렬을 이용한 기회 주파수 접근 방식의 성능 분석 (The Analysis of an Opportunistic Spectrum Access with a Strict T-preemptive Priority Discipline)

  • 김길환
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.162-170
    • /
    • 2012
  • We propose a new priority discipline called the strict T-preemptive priority discipline, and derive the waiting time distributions of each class in the strict T-preemptive priority M/G/1 queue. Using this queueing analysis, we evaluate the performance of an opportunistic spectrum access in cognitive radio networks, where a communication channel is divided into time slots, a licensed primary user is assigned to one channel, and multiple unlicensed secondary users may opportunistically exploit time slots unused by the primary user. We also present a numerical example of the analysis of the opportunistic spectrum access where the arrival rates and service times distributions of each users are identical.

AN M/G/1 QUEUEING SYSTEM WITH MULTIPLE PRIORITY CLASSES

  • Han, Dong-Hwan
    • Journal of applied mathematics & informatics
    • /
    • 제1권1호
    • /
    • pp.55-74
    • /
    • 1994
  • We consider an M/G/1 queueing system with multiple priority classes of jobs. Considered preemptive rules are the preemptive-resume preemptive-repeat-identical, and preemptive-repeat-different policies. These three preemptive rules will be analyzed in parallel. The key idea of analysis is based on the consideration of a busy period as composite of delay cycle. As results we present the exact Laplace-Stieltjecs(L.S) transforms of residence time and completion time in the system.

진화알고리즘을 이용한 선취적 다목표 양면조립라인 밸런싱 (Two-Sided Assembly Line Balancing with Preemptive Multiple Goals Using an Evolutionary Algorithm)

  • 송원섭;김여근
    • 한국경영과학회지
    • /
    • 제34권2호
    • /
    • pp.101-111
    • /
    • 2009
  • This paper considers two-sided assembly line balancing with preemptive multiple goals. In the problem, three goals are taken into account in the following priority order : minimizing the number of mated-stations, achieving the goal level of workload smoothness, and maximizing the work relatedness. An evolutionary algorithm is used to solve the multiple goal problems. A new structure is presented in the algorithm, which is helpful to searching the solution satisfying the goals in the order of the priority. The proper evolutionary components such as encoding and decoding method, evaluation scheme, and genetic operators, which are specific to the problem being solved, are designed in order to improve the algorithm's performance. The computational results show that the proposed algorithm is premising in the solution quality.

Non-preemptive Queueing Model of Spectrum Handoff Scheme Based on Prioritized Data Traffic in Cognitive Wireless Networks

  • Bayrakdar, Muhammed Enes;Calhan, Ali
    • ETRI Journal
    • /
    • 제39권4호
    • /
    • pp.558-569
    • /
    • 2017
  • In this study, a non-preemptive M/G/1 queueing model of a spectrum handoff scheme for cognitive wireless networks is proposed. Because spectrum handoff gives secondary users an opportunity to carry on their transmissions, it is crucially important to determine the actions of primary users. In our queueing model, prioritized data traffic is utilized to meet the requirements of the secondary users. These users' packets are categorized into three different priority classes: urgent, real-time, and non-real time. Urgent data packets have the highest priority, while non-real time data packets have the lowest priority. Riverbed (OPNET) Modeler simulation software was used to simulate both reactive and proactive decision spectrum handoff schemes. The simulation results were consistent with the analytical results obtained under different load and traffic conditions. This study also revealed that the cumulative number of handoffs can be drastically decreased by exploiting priority classes and utilizing a decent spectrum handoff strategy, such as a reactive or proactive decision-based strategy.

IEC 61850 프로토콜의 실시간성 향상을 위한 선점형 이더넷 컨트롤러 (Preemptive Ethernet Controller to Improve Real-Time Characteristics of IEC 61850 Protocol)

  • 이범용;박태림;박재현
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1923-1928
    • /
    • 2010
  • The IEC 61850 protocol proposed for the interoperability between IEDs(intelligent electronic devices) adopts the prioritized switched ethernet as its communication channel because substation bus is utilized to exchange both real-time and non real-time messages. The prioritized switched ethernet uses IEEE 802.1Q/p QoS(Quality of Service) in addition to IEEE 802.3 ethernet to enhance the real-time characteristics. However, IEEE 802.1Q/p QoS has priority-blocking problem that occurs when higher-priority frame transmission request during lower-priority frame transmission. To resolve this problem, this paper proposes P(Preemptive)-Ethernet. P-Ethernet uses the modified IEEE 802.1Q/p frame format and new priority preemption mechanism. This paper also implements P-Ethernet controller using FPGA (Virtex-4) and MicroBlaze processor. From the implementation results, P-Ethernet controller shows a improved latency and jitter of transmission period compare to the normal ethernet controller.

홈 게이트웨이에서 서비스 특성에 따른 버퍼 동작 시간 제어를 통한 전력 소비 감소 방안 (Method for Reduction of Power Consumption using Buffer Processing Time Control in Home Gateway)

  • 양현;유길상;김용운;최성곤
    • 한국콘텐츠학회논문지
    • /
    • 제12권8호
    • /
    • pp.69-76
    • /
    • 2012
  • 본 논문은 홈 게이트웨이에서 타이머를 고려한 슬립 모드를 이용하여 효과적인 전력 소비 방안을 제안한다. 본 논문에 의하면 홈 게이트웨이로 유입되는 패킷을 실시간 패킷과 비실시간 패킷으로 구분하고 비실시간 패킷을 지연시킨다. 따라서 비실시간 패킷은 타이머를 고려한 메커니즘을 통해 추가적인 대기시간을 얻음으로써 홈 게이트웨이의 슬립 시간을 증가 시킬 수 있다. 성능 분석을 위하여 non-preemptive two priority queueing 모델을 이용하였다. 그 결과, 비실시간 트래픽을 지연시킴으로써 기존 방안에 비하여 제안 방안의 소비되는 전력이 감소됨을 확인할 수 있다.

두개의 우선 순위를 가지는 고속 스윗칭 시스템의 설계 및 성능 분석 (Design and Analsis of a high speed switching system with two priority)

  • 홍요훈;최진식;전문석
    • 정보처리학회논문지C
    • /
    • 제8C권6호
    • /
    • pp.793-805
    • /
    • 2001
  • 기존 우선 순위 시스템에서는 우선 순위가 높은 패킷이 시스템에서 우선적으로 서비스를 받고 우선 순위가 낮은 패킷은 우선 순위가 높은 패킷이 없을 경우에만 서비스 받도록 되어있다. 그러나 입력 큐잉 시스템에서는 HOL(Head of Line)경쟁에 의해서 우선 순위가 높은 패킷이라도 차단 될 확률이 높다. 따라서 우선 순위가 높은 패킷이 차단됐을 경우라도 우선 순위가 낮은 패킷을 서비스 해 줌으로써 전체적으로 스윗칭 성능을 향상 시킬 수 있다. 본 논문은 고속 스위칭 시스템에서의 우선순위 기반 방식의 성능 분석을 하였다. 스윗칭 시스템 분석은 HOL(Head of line)경쟁 현상에 대한 우선순위 스케쥴링이 미치는 영향을 고려 하였다. 또한 이러한 제어방식을 기반으로 시스템의 최대 처리율, 큐잉 분포현상을 도출 하였다. 입력단 간에 서비스 의존도 때문에 스윗칭 시스템의 정확한 분석은 어려우나 상호 의존성을 갖는다는 가정과 흐름제어 규정을 두어 분석을 하였다. 각각의 입력단에서 보여주는 서비스 향상을 평가 하기위해 큐잉 시스템을 이용 하였다. 윈도우 방식을 고려하지 않고 우선순위 방식에서 정확한 결과를 구하기 위하여 Chen과Guerin[1]가 사용한 방식을 확장 하였다. 더욱이 시스템 구현과 운영 관점에서 우선순위 스윗칭 시스템에 적용하기 위하여 새로운 윈도우 제어방식을 제안한다. 그러므로 우선순위가 낮은 패킷은 지연시간과 처리율을 향상 시킬 수 있다. 성능 향상을 위해 결과치를 비교하여 등가 큐잉시스템을 사용하여 윈도우 방식을 분석 하였다.

  • PDF