• Title/Summary/Keyword: Predictive modeling

Search Result 355, Processing Time 0.027 seconds

Multi-scale Modeling of Plasticity for Single Crystal Iron (단결정 철의 소성에 대한 멀티스케일 모델링)

  • Jeon, J.B.;Lee, B.J.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.366-371
    • /
    • 2012
  • Atomistic simulations have become useful tools for exploring new insights in materials science, but the length and time scale that can be handled with atomistic simulations are seriously limiting their practical applications. In order to make meaningful quantitative predictions, atomistic simulations are necessarily combined with higher-scale modeling. The present research is thus concerned with the development of a multi-scale model and its application to the prediction of the mechanical properties of body-centered cubic(BCC) iron with an emphasis on the coupling of atomistic molecular dynamics with meso-scale discrete dislocation dynamics modeling. In order to achieve predictive multi-scale simulations, it is necessary to properly incorporate atomistic details into the meso-scale approach. This challenge is handled with the proposed hierarchical information passing strategy from atomistic to meso-scale by obtaining material properties and dislocation mobility. Finally, this fundamental and physics-based meso-scale approach is employed for quantitative predictions of the mechanical response of single crystal iron.

Predictive Modeling of Competitive Biosorption Equilibrium Data

  • Chu K.H.;Kim E.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2006
  • This paper compares regression and neural network modeling approaches to predict competitive biosorption equilibrium data. The regression approach is based on the fitting of modified Langmuir-type isotherm models to experimental data. Neural networks, on the other hand, are non-parametric statistical estimators capable of identifying patterns in data and correlations between input and output. Our results show that the neural network approach outperforms traditional regression-based modeling in correlating and predicting the simultaneous uptake of copper and cadmium by a microbial biosorbent. The neural network is capable of accurately predicting unseen data when provided with limited amounts of data for training. Because neural networks are purely data-driven models, they are more suitable for obtaining accurate predictions than for probing the physical nature of the biosorption process.

Under-use of Radiotherapy in Stage III Bronchioaveolar Lung Cancer and Socio-economic Disparities in Cause Specific Survival: a Population Study

  • Cheung, Min Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4091-4094
    • /
    • 2014
  • Background: This study used the receiver operating characteristic curve (ROC) to analyze Surveillance, Epidemiology and End Results (SEER) bronchioaveolar carcinoma data to identify predictive models and potential disparity in outcomes. Materials and Methods: Socio-economic, staging and treatment factors were assessed. For the risk modeling, each factor was fitted by a Generalized Linear Model to predict cause specific survival. The area under the ROC was computed. Similar strata were combined to construct the most parsimonious models. A random sampling algorithm was used to estimate modeling errors. Risk of cause specific death was computed for the predictors for comparison. Results: There were 7,309 patients included in this study. The mean follow up time (S.D.) was 24.2 (20) months. Female patients outnumbered male ones 3:2. The mean (S.D.) age was 70.1 (10.6) years. Stage was the most predictive factor of outcome (ROC area of 0.76). After optimization, several strata were fused, with a comparable ROC area of 0.75. There was a 4% additional risk of death associated with lower county family income, African American race, rural residency and lower than 25% county college graduate. Radiotherapy had not been used in 2/3 of patients with stage III disease. Conclusions: There are socio-economic disparities in cause specific survival. Under-use of radiotherapy may have contributed to poor outcome. Improving education, access and rates of radiotherapy use may improve outcome.

Study on predictive modeling of incidence of traffic accidents caused by weather conditions (날씨 변화에 따라 교통사고 예방을 위한 예측모델에 관한 연구)

  • Chung, Young-Suk;Park, Rack-Koo;Kim, Jin-Mook
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • Traffic accidents are caused by a variety of factors. Among the factors that cause traffic accidents are weather conditions at the time. There is a difference in the percentage of deaths according to traffic accidents, due to the weather conditions. In order to reduce the number of deaths due to traffic accidents, to predict the incidence of traffic accidents that occur in response to weather conditions is required. In this paper, it propose a model to predict the incidence of traffic accidents caused by weather conditions. Predictive modeling was applied to the theory of Markov processes. By applying the actual data for the proposed model, to predict the incidence of traffic accidents, it was compared with the number of occurrences in practice. In this paper, it is to support the development of traffic accident policy with the change of weather.

Receiver Operating Characteristic Curve Analysis of SEER Medulloblastoma and Primitive Neuroectodermal Tumor (PNET) Outcome Data: Identification and Optimization of Predictive Models

  • Cheung, Min Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6781-6785
    • /
    • 2014
  • Purpose: This study used receiver operating characteristic curves to analyze Surveillance, Epidemiology and End Results (SEER) medulloblastoma (MB) and primitive neuroectodermal tumor (PNET) outcome data. The aim of this study was to identify and optimize predictive outcome models. Materials and Methods: Patients diagnosed from 1973 to 2009 were selected for analysis of socio-economic, staging and treatment factors available in the SEER database for MB and PNET. For the risk modeling, each factor was fitted by a generalized linear model to predict the outcome (brain cancer specific death, yes/no). The area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. A Monte Carlo algorithm was used to estimate the modeling errors. Results: There were 3,702 patients included in this study. The mean follow up time (S.D.) was 73.7 (86.2) months. Some 40% of the patients were female and the mean (S.D.) age was 16.5 (16.6) years. There were more adult MB/PNET patients listed from SEER data than pediatric and young adult patients. Only 12% of patients were staged. The SEER staging has the highest ROC (S.D.) area of 0.55 (0.05) among the factors tested. We simplified the 3-layered risk levels (local, regional, distant) to a simpler non-metastatic (I and II) versus metastatic (III) model. The ROC area (S.D.) of the 2-tiered model was 0.57 (0.04). Conclusions: ROC analysis optimized the most predictive SEER staging model. The high under staging rate may have prevented patients from selecting definitive radiotherapy after surgery.

Modeling and Simulation of Emergent Evacuation Using Affordance-based FSA Models (어포던스 기반 FSA모델을 이용한 대피자 행동 모델링 및 시뮬레이션)

  • Joo, Jae-Koo;Kim, Nam-Hun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.96-104
    • /
    • 2011
  • Modeling and simulation of human-involved complex systems pose challenges to representing human decision makings into logical systems because of the nondeterministic and dynamic nature of human behaviors. In modeling perspectives, human's activities in systems can increase uncertainty and complexity, because he or she can potentially access all other resources within the system and change the system states. To address all of these human involvements in the system, this research suggests applying the Finite State Automata (FSA)-based formal modeling of human-involved systems that incorporates the ecological concept of affordances to an evacuation simulation, so that human behavioral patterns under urgent and dynamic emergency situations can be considered in the real-time simulation. The proposed simulation methodologies were interpreted using the warehouse fire evacuation simulation to clarify the applicability of the proposed methodology. This research is expected to merge system engineering technologies and human factors, and come out to the new predictive modeling methodology for disaster simulations. This research can be applied to a variety of applications such as building layout designs and building access control systems for emergency situations.

Model development in freshwater ecology with a case study using evolutionary computation

  • Kim, Dong-Kyun;Jeong, Kwang-Seuk;McKay, Robert Ian (Bob);Chon, Tae-Soo;Kim, Hyun-Woo;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.275-288
    • /
    • 2010
  • Ecological modeling faces some unique problems in dealing with complex environment-organism relationships, making it one of the toughest domains that might be encountered by a modeler. Newer technologies and ecosystem modeling paradigms have recently been proposed, all as part of a broader effort to reduce the uncertainty in models arising from qualitative and quantitative imperfections in the ecological data. In this paper, evolutionary computation modeling approaches are introduced and proposed as useful modeling tools for ecosystems. The results of our case study support the applicability of an algal predictive model constructed via genetic programming. In conclusion, we propose that evolutionary computation may constitute a powerful tool for the modeling of highly complex objects, such as river ecosystems.

Comparative Molecular Field Analysis of Dioxins and Dioxin-like Compounds

  • Ashek, Ali;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • Because of their widespread occurrence and substantial biological activity, halogenated aromatic hydrocarbons are one of the important classes of contaminants in the environment. We have performed comparative molecular field analysis (CoMFA) on structurally diverse ligands of Ah (dioxin) receptor to explore the physico-chemical requirements for binding. All CoMFA models have given $q^{2}$ value of more than 0.5 and $r^{2}$ value of more than 0.83. The predictive ability of the models was validated by an external test set, which gave satisfactory predictive $r^{2}$ values. Best predictions were obtained with CoMFA model of combined modified training set ($q^{2}=0.631,\;r^{2}=0.900$), giving predictive residual value = 0.002 log unit for the test compound. We have suggested a model comprises of four structurally different compounds, which offers a good predictability for various ligands. Our QSAR model is consistent with all previously established QSAR models with less structurally diverse ligands. The implications of the CoMFA/QSAR model presented herein are explored with respect to quantitative hazard identification of potential toxicants.

Design of a fuzzy model predictive controller for combustion control of refuse incineration plant (쓰러기 소각로의 연소제어를 위한 퍼지모델 예측제어기 설계)

  • 박종진;강신준;남의석;김여일;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 1997
  • Refuse incineration plant operations involve many kinds of uncertain factors, such as the variable physical properties of refuse as fuel and the complexity of the burning phenomenon. This makes it very dificult to apply conventional control methods to the combustion control of the refuse. So most of the refuse incineration plant are operated by operators. In this paper, an multi-variable fuzzy model predictive controller is proposed for the combustion control of the re:fuse. Adaptive network based fuzzy inference system is used for modeling of the refuse incineration plant and multi-variable fuzzy model predictive controller is designed based on the identified fuzzy model. And computer simulation was carried out to evaluate performance of the proposed controller.

  • PDF

Analysis of SEER Adenosquamous Carcinoma Data to Identify Cause Specific Survival Predictors and Socioeconomic Disparities

  • Cheung, Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.347-352
    • /
    • 2016
  • Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) adenosquamous carcinoma data to identify predictive models and potential disparities in outcome. Materials and Methods: This study analyzed socio-economic, staging and treatment factors available in the SEER database for adenosquamous carcinoma. For the risk modeling, each factor was fitted by a generalized linear model to predict the cause specific survival. An area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. Results: A total of 20,712 patients diagnosed from 1973 to 2009 were included in this study. The mean follow up time (S.D.) was 54.2 (78.4) months. Some 2/3 of the patients were female. The mean (S.D.) age was 63 (13.8) years. SEER stage was the most predictive factor of outcome (ROC area of 0.71). 13.9% of the patients were un-staged and had risk of cause specific death of 61.3% that was higher than the 45.3% risk for the regional disease and lower than the 70.3% for metastatic disease. Sex, site, radiotherapy, and surgery had ROC areas of about 0.55-0.65. Rural residence and race contributed to socioeconomic disparity for treatment outcome. Radiotherapy was underused even with localized and regional stages when the intent was curative. This under use was most pronounced in older patients. Conclusions: Anatomic stage was predictive and useful in treatment selection. Under-staging may have contributed to poor outcome.