• 제목/요약/키워드: Predictive decision tree

검색결과 116건 처리시간 0.021초

시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측 (Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.155-170
    • /
    • 2018
  • 기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.

문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구 (A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model)

  • 심재승;원하람;안현철
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.201-220
    • /
    • 2019
  • 가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.

AutoML을 이용한 산사태 예측 및 변수 중요도 산정 (Prediction of Landslides and Determination of Its Variable Importance Using AutoML)

  • 남경훈;김만일;권오일;왕파우;정교철
    • 지질공학
    • /
    • 제30권3호
    • /
    • pp.315-325
    • /
    • 2020
  • 이 연구는 도로 비탈면에서 발생하는 산사태의 확률론적 예측에 기반된 산사태 발생에 영향을 미치는 인자의 중요도 산정 및 예측 모델을 개발하는 것이다. 산사태 예측 모델을 개발하기 위해 한반도 전 지역을 대상으로 2007년부터 2020년까지 조사된 30,615사면의 현장조사 자료를 활용하였다. 전체 131개의 변수 인자 중 지형인자 17개, 지질인자 114개(기반암 89개를 포함), 도로와의 이격거리를 사용하였다. 산사태 발생에 영향을 미치는 인자를 자동화된 머신러닝인 AutoML을 실시하여 예측 성능이 뛰어난 XRT(extremely randomized trees)를 선정하였다. 변수 중요도 분석결과 지형적 요인 10개, 지질인자 9개, 사회적 영향성인 도로와의 이격 거리와 관련된 항목순으로 급경사지 불안정에 가장 많은 영향을 주는 것으로 분석되었다. 개발된 모델의 신뢰성 검증을 수행한 결과 AUC 83.977%의 예측율을 확보한 것으로 나타났다. 이 모델은 산사태 이력을 기반으로 한 현장조사 자료만을 이용하여 변수 중요도의 순위를 도출함으로써 그에 따른 산사태 발생 가능성을 확률적 및 정량적으로 평가하였다. 향후 의사 결정자들에게 현장조사를 통한 사면진단 안전평가 시 신뢰성 있는 근거를 제공하리라 판단된다.

철도사고의 인적오류 분석을 위한 수행도 영향인자 분류 (Taxonomy of Performance Shaping Factors for Human Error Analysis of Railway Accidents)

  • 백동현;구락조;이경선;김동산;신민주;윤완철;정명철
    • 산업경영시스템학회지
    • /
    • 제31권1호
    • /
    • pp.41-48
    • /
    • 2008
  • Enhanced machine reliability has dramatically reduced the rate and number of railway accidents but for further reduction human error should be considered together that accounts for about 20% of the accidents. Therefore, the objective of this study was to suggest a new taxonomy of performance shaping factors (PSFs) that could be utilized to identify the causes of a human error associated with railway accidents. Four categories of human factor, task factor, environment factor, and organization factor and 14 sub-categories of physical state, psychological state, knowledge/experience/ability, information/communication, regulation/procedure, specific character of task, infrastructure, device/MMI, working environment, external environment, education, direction/management, system/atmosphere, and welfare/opportunity along with 131 specific factors was suggested by carefully reviewing 8 representative published taxonomy of Casualty Analysis Methodology for Maritime Operations (CASMET), Cognitive Reliability and Error Analysis Method (CREAM), Human Factors Analysis and Classification System (HFACS), Integrated Safety Investigation Methodology (ISIM), Korea-Human Performance Enhancement System (K-HPES), Rail safety and Standards Board (RSSB), $TapRoot^{(R)}$, and Technique for Retrospective and Predictive Analysis of Cognitive Errors (TRACEr). Then these were applied to the case of the railway accident occurred between Komo and Kyungsan stations in 2003 for verification. Both cause decision chart and why-because tree were developed and modified to aid the analyst to find causal factors from the suggested taxonomy. The taxonomy was well suited so that eight causes were found to explain the driver's error in the accident. The taxonomy of PSFs suggested in this study could cover from latent factors to direct causes of human errors related with railway accidents with systematic categorization.

생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델 (Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • 제42권4호
    • /
    • pp.309-316
    • /
    • 2017
  • 라돈 및 그 자손은 폐암을 일으키는 환경적 위험인자로, 일상 활동 및 수면 등으로 많은 시간을 보내는 실내 라돈 농도 관리는 필수적이다. 이를 위해서는, 주거지를 둘러싼 개인적, 사회적, 환경적 요소에 대한 총체적 접근이 필요하다. 따라서 본 연구는 실내 라돈 농도에 영향을 미치는 다양한 인자를 찾아내고, 이를 활용한 포괄적 모델을 구축하고자 한다. 건축 자재 및 생활 양식을 포함한 주거 환경에 대한 자료를 얻기 위해 설문을 실시하였고, 의사결정트리 및 구조 방정식 모델링을 활용하였다. 그 결과 주거지 주변 녹지 비율, 불 투과성 층 비율, 주택과 지면의 맞닿은 상태, 매일 환기 습관, 난방 습관, 측정 장치 주위의 균열 및 침실여부는 실내 라돈 농도와 유의한 연관성을 보였다. 매일 환기 습관을 가질 경우 실내 라돈 농도가 $200Bq/m^3$ 이상인 비율이 11.6%로 줄었다. 한편 매일 환기습관이 없는 주거자의 주거지 주변 녹지 비율이 65% 이상이면 매일 환기 습관이 있는 주거자와 비교하여 15.3%의 비율이 증가하였다. 구축된 포괄적 모델의 실내 라돈 농도에 직접 영향을 미치는 인자는 주거지 주변 녹지 비율과 환기율이었다. 제시된 모델로 국내 라돈 농도에 대한 개인의 지리적 특성, 지하수 및 생활 양식 요소의 결합된 영향을 확인할 수 있었다.

머신러닝 기반 대학생 중도 탈락 예측 모델의 성능 비교 (Performance Comparison of Machine Learning based Prediction Models for University Students Dropout)

  • 정석봉;김두연
    • 한국시뮬레이션학회논문지
    • /
    • 제32권4호
    • /
    • pp.19-26
    • /
    • 2023
  • 전국 대학생의 중도 탈락 비율의 증가는 학생 개인 뿐만 아니라 대학과 사회에 심각한 부정적 영향을 끼친다. 본 연구에서는 중도 탈락이 예상되는 학생을 사전에 식별하기 위하여, 각 대학의 학사관리 시스템에서 손쉽게 얻을 수 있는 학적 데이터를 기반으로 머신러닝 분야의 결정트리, 랜덤 포레스트, 로지스틱 회귀 및 딥러닝 기반의 중도 탈락 예측 모델을 구축하고, 그 성능을 비교·분석하였다. 분석 결과 로지스틱 회귀 기반 예측 모델의 재현율이 가장 높았으나 f-1 및 auc 값이 낮은 한계를 보였고, 랜덤 포레스트 기반의 예측 모델의 경우 재현율을 제외한 다른 모든 지표에서 가장 우수한 성능을 보였다. 또한 예측 기간에 따른 예측 모델의 성능을 확인하기 위하여 예측 기간을 단기(1개 학기 이내), 중기(2개 학기 이내) 및 장기(3개 학기 이내)로 나누어 분석해 본 결과, 장기 예측 시 가장 높은 예측력을 보였다. 본 연구를 통해 각 대학은 중도 탈락이 예상되는 학생들을 조기에 식별하고, 이들에 대한 집중 관리를 통해 중도 탈락 비율을 줄이며 나아가 대학 재정 안정화에 기여할 수 있을 것으로 기대된다.