연구목적: 본 연구는 군에서 가장 많이 발생하는 교통사고의 예방을 위해 부대별로 교통사고가 발생할 확률을 사전에 예측하는 모형의 개발 방안을 제시하는 것이다. 연구방법: 이를 위해 CRISP-DM(Cross Industry Standard Process for Data Mining) 방법론을 적용하였다. CRISP-DM 프로세스는 6단계로 구성되어 있고, 각 단계는 Waterfall Model처럼 일방향으로 구성되어 있지 않고 단계 간 피드백을 통하여 단계별 완성도를 높이게 되어 있다. 연구결과:전체 집단을 대상으로 기 구축된 사고조사 데이터와 동일한 데이터 세트(data set)를 구축하여 모델링한 결과 분류기준 0.5로 했을 때, 교통사고예측을 위한 모형의 정확도, 특이도, 민감도, AUC에서 의미있는 결과치를 도출하였다. 결론: 예측모형을 설계하는 과정에서 데이터의 부족으로 인해 의미 있는 예측값을 얻기 어려운 문제점이 확인되었다. 이를 해결하기 위해 합리적 추론이 가능한 데이터 세트(data set)를 재구성 및 확대하여 데이터 부족을 해소하고, 이를 활용한 예측모형을 설계할 수 있는 방법론을 제시하였다.
Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.1975-1988
/
2019
Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.
본 논문은 현재 및 가까운 미래에 있을 교통정보의 제공에 관한 일반적인 가능성으로서 교통현상의 기술이 가능한 교통예측모형의 사용에 대한 총체적인 정리를 함과 함께 바람직한 모형의 제시가 주요 목적이다. 이를 위하여 우선 동적교통배정모형, 통계모형, 모의실험모형, 및 휴리스틱모형이 어떵게 교통정보제공을 위해서 사용될 수 있는지를 각 모형별 제반 특성적 측면에서 검토를 한다. 다음에 이러한 모형의 각종 요구사항이 분석되며, 더 나아가 단기간 교통 상황을 예측하기 위한 각 모형의 능력 및 장단점이 서술적인 관점에서 기술되어진다. 마지막으로, 이러한 각각의 장점을 수용할 수 있을 만한 포괄적인 예측모형의 전형이 그러한 모형을 구축함에 있어서 필요로 하는 데이터의 요구조건과 함께 제시된다.
현대 사회는 다양한 범죄가 발생하고 있다. 범죄를 예방하기 위해서는 범죄를 예측 하는 것이 필요하고, 범죄 예측에 관한 다양한 연구가 진행 중에 있다. 범죄 관련 데이터는 검찰청에서 1년에 한번 통계처리를 하여 발표하고 있다. 그러나 통계처리 된 자료는 현재 시점을 기준으로 약 2년 전의 자료로 현재 발생하는 범죄에 대한 데이터로 적합하지 않다. 본 논문은 범죄를 예측하는 데이터로 네이버 트랜드를 적용했다. 네이버 트랜드의 웹 검색 트래픽을 이용하면, 현재 발생하는 범죄에 대한 관심도 데이터를 얻을 수 있다. 네이버 웹 검색 트래픽 데이터를 이용하여 범죄를 예측할 수 있는 모델링을 구성하였고, 예측 이론으로 마코프 체인을 적용하였다. 다양한 범죄 중 살인, 방화, 강간을 대상으로 예측 모델링에 적용하였고, 결과 값을 분석하였다. 그 결과 실제 발생한 범죄 발생 빈도수를 기준으로 20%이내의 유사한 결과를 얻었다. 향후에는 계절의 특성을 고려한 범죄 예측 모델링에 대한 연구를 진행할 예정이다
기술 및 환경적 요인으로 수집이 어려웠던 다양한 교통자료의 수집이 가능해져 보다 다양하고 유의미한 교통정보의 생성과 제공이 가능하게 되었다. 본 연구에서는 유비퀴터스 환경기반의 교통정보시스템을 구성하는 요소들의 역할을 설명하고 차내단말기에서 교통정보 생성을 위한 자료처리 프로세스를 제시하였다. 자료의 수집, 정보생성, 무선통신을 통한 송수신, 수신정보와 생성정보의 융합을 통한 저장 등의 과정으로 구성된 프로세스를 바탕으로 실제 수집한 개별차량 주행궤적자료를 이용하여 제안된 방법론의 현장 적용성 평가를 수행하였다. 수인산업도로의 약 17km구간에서 20대의 Probe차량이 주행하며 수집한 개별차량주행궤적자료를 이용하여 구간통행시간을 산출하고 이를 평가하였다. 구간정보의 생성 및 평가는 구간 내에 존재하는 차량들의 속도자료를 이용하여 통행시간을 산출하고 이를 구간에 진입하는 차량의 실제 통행 시간과 비교하여 정확도를 평가하였다. 전체 분석대상구간을 2개, 4개의 구간으로 구분하여 분석을 수행하였으며, 전체적으로 추정된 구간통행시간의 정확도는 90%내외로 산출되었다. 또한, 유비퀴터스 환경 기반 교통정보시스템이 현장에 적용 될 경우 무선통신, 교통환경, 정보생성방법 측면에서 고려되어야 할 사항에 대해 서술하였다. 본 연구는 현장에서 수집한 실제자료를 이용하여 차량에 탑재된 차내단말기에서 교통정보를 생성하고 이를 평가하는 방법론과 프로세스를 제시하였다는 점에서 의의가 있으며, 향후 유비퀴터스 환경기반의 교통정보시스템의 성공적인 개발 및 현장적용을 위한 기초연구가 될 것으로 판단된다.
ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates. In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals. The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series. The predicted congestion information is backward to the node. NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction. Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.
실시간 교통정보는 운전자 입장에서는 항상 과거정보가 되는 특성이 있기에. 신뢰도 높은 예측교통정보 가공의 필요성은 오래전부터 제기되어 왔다. 교통류의 상태를 운전자에게 알리는 방안에는 속도, 통행시간도 있지만, 정체가 심하고 링크가 긴 구간에서는 대기행렬의 길이가 매우 효과적인 제공방안의 하나이다. 본 논문은 Kalman filter를 활용하여 대기행렬 길이를 예측하는 모델을 제안한 후, 실제 검지기 자료를 이용하여 서울 도심의 남산권 네트웍 상에 적용하였다. 5분후의 대기행렬 길이를 예측한 후 통계적으로 검증해 본 결과, 상당한 예측력을 확보할 수 있었다. 본 연구는 국내외 최초로 도심부에서 대기행렬 길이 예측을 시도하였고 실제 활용 가능성을 타진했다는데 큰 의미가 있다.
트래픽의 증가는 전체 네트워크 성능에 크게 영향을 미치며 네트워크 성능의 유지 및 향상을 위해서는 트래픽 관리가 필수적이다. 본 논문에서는 네트워크 트래픽을 분석하여 시계열 모형에 의해 트래픽을 예측하고 예측된 결과가 대역폭에 비해 크다면 트래픽 폭주임을 가정하고 라우팅 경로의 비용을 증가하여 트래픽을 분산되도록 한다. 즉, 라우팅 혼잡의 발생을 예측하여 라우팅 혼잡을 미리 해소하는 방안을 제안한다. 예측 모형은 실제 네트워크 망에서 트래픽을 수집하여 모형의 확률적 오차를 최소화하는 모형을 추출한다. 확률적 오차를 최소화하는 시계열 모형을 얻기 위해서는 정상성 가정에 대한 적합성을 판단하는데, 정상성 가정은 자기상관함수와 편자기상관함수를 통해 얻을 수 있다. 실험을 통하여 추출된 예측 모형이 라우팅 경로의 비용을 조정함으로써 트래픽이 분산되도록 한다. 그 결과, 트래픽 예측 라우팅이 혼잡 발생을 미연에 방지하여 네트워크 성능을 향상시킬 수 있는 방안이라는 것을 보인다.
BIS (Bus Information System:버스정보시스템, 이하 BIS)는 시내버스 운행과 관련된 각종 정보를 수집하고 예측알고리즘을 통해 이용객에게 정보를 제공하고 있다. 동일 구간의 최근 정보를 통한 예측방법은 해당 구간의 소통상황을 반영하지만 예측 대상노선의 특성을 반영할 수 없다는 한계가 있다. 해당노선의 동시간대 과거이력자료를 통해 예측하는 방법은 소통상황의 변동성이 큰 첨두시 예측에 한계가 있는 실정이다. 따라서 예측대상 시점의 통행패턴을 인식하고 가장 유사한 과거 시점의 통행패턴을 선택할 수 있는 패턴인식형 버스도착시간 예측 알고리즘을 개발하였다. 본연구의 예측 결과를 서울시 BIS 도착예측정보이력과 비교 검증한 결과 각 정류장 간 통행시간의 평균제곱근오차가 비첨두시 약 35초(기존: 40초), 첨두시 약 40초(기존: 60초)로 기존대비 약 10~20 %의 개선을 보였다. 이는 동일 과거 시간대 외의 시간대에 현재 교통상황을 대표할 수 있는 자료가 존재함을 의미한다.
Advanced Traveler Inoformation Systems*ATIS) , as a subsystem of ITS influence the travel choices of dreivers by providing them with historical, real-time and predictive information to supprot travel decisions and consequently improves the speed and quality of travel. For thesuccessul accomplishment of ATIS, the time-dependent variations of traffic in a road network and travel times of vehicles during their journey must be predicted . The purpose of this study is to evaluate the past developments in the dynamic route choice models and to apply the instantaneous dynamic user optimal route choice model. recently formulated with flow propagation constraints by Ran, Boyce and LeBlanc, to the real transportation network of Seocho-Ku in Seoul. As input data for this application, the time-dependent travel rates are estimated and the link travel time function is derived. The modelis validated from three view points : the efficiency of model itself the ability to predict traffic volume and travel time on links, and the optimal traffic control.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.