This study was performed to provide fundamental data on hygiene and quality control of ready-to-eat sandwiches. Predictive models were developed to the kinetics of Staphylococcus aureus growth in these sandwiches as a function of temperature (10, 15, 25, and 35℃). The result of the primary model that used the Gompertz equation showed that the lag phase duration (LPD) and generation time (GT) decreased and the exponential growth rate (EGR) increased with increasing storage temperature. The secondary model showed an R2 for M and B of 0.9967 and 09916, respectively. A predictive growth model of the growth degree as a function of temperature was developed. L(t)=A+Cexp(-exp(-B(t-M))) (A=Initial contamination level, C=MPD-A, B=0.473166-0.045040*Temp-0.001718*Temp*Temp, M=19.924824-0.627442*Temp-0.004493*Temp*Temp, t=time, Temp=temperature). This model showed an R2 value of 0.9288. All the models developed in this study showed a good fit.
This study was performed to develop a predictive model for the growth kinetics of Listeria monocytogenes in tryptic soy broth (TSB) using a response surface model with a combination of potassium lactate (PL), temperature, and pH. The growth parameters, specific growth rate (SGR), and lag time (LT) were obtained by fitting the data into the Gompertz equation and showed high fitness with a correlation coefficient of $R^2{\geq}0.9192$. The polynomial model was identified as an appropriate secondary model for SGR and LT based on the coefficient of determination for the developed model ($R^2\;=\;0.97$ for SGR and $R^2\;=\;0.86$ for LT). The induced values that were calculated using the developed secondary model indicated that the growth kinetics of L. monocytogenes were dependent on storage temperature, pH, and PL. Finally, the predicted model was validated using statistical indicators, such as coefficient of determination, mean square error, bias factor, and accuracy factor. Validation of the model demonstrates that the overall prediction agreed well with the observed data. However, the model developed for SGR showed better predictive ability than the model developed for LT, which can be seen from its statistical validation indices, with the exception of the bias factor ($B_f$ was 0.6 for SGR and 0.97 for LT).
본 연구는 수육에 쉽게 오염될 수 있는 S. aureus에 대한 성장 예측모델을 적용하고, 이를 비교하여 수육을 안전하게 관리하기 위한 적절한 모델을 제시하고자 하였다. 온도에 따른 S. aureus의 성장곡선은 5, 15, $25^{\circ}C$의 보관온도에서 측정하였다. 수육에 오염된 S. aureus의 성장결과를 기초로 온도에 따라 Baranyi model과 Gompertz model을 이용하여 SGR와 LT를 산출하였다. 두 모델에 대하여 R2과 RMSE를 산출하여 통계적인 적합성을 비교하였으며 그 결과 Baranyi model에서는 각각 0.98, 0.27, Gompertz model에서는 각각 0.84, 0.84로 나타나 Baranyi model이 온도변화에 따라 S. aureus 생육을 예측하기 위한 이차모델의 변수 값으로 사용하는데 더 적합하였다. RSM을 이용한 2차 모델에서는 $R^2$이 5, 15, $25^{\circ}C$에서 각각 0.88, 0.99, 0.99로 나타나 실험값과 예측값의 상관관계가 높았다. 또한 RMSE는 온도별로 각각 0.11, 0.24, 0.10로 나타났고, $B_f$는 각각1.12, 1.02, 1.03로, $A_f$는 각각 1.17, 1.03, 1.03로 나타나 통계적 적합성이 높다고 할 수 있다. 따라서 개발된 모델을 이용할 경우 수육의 다양한 조리환경과 온도에 따른 S. auresus 성장을 추정할 수 있으며, 이를 위해 평가에서 충분히 활용할 수 있을 것으로 보인다.
게맛살로부터 분리한 주요 부패세균은 내열성 포자를 형성하는 Bacillus subtilis와 Bacillus licheniformis로 동정되었다. 게맛살의 제조 공정상 가열 처리 과정에서 B. subtilis와 B. Licheniformis 등 내열성 포자를 형성하는 균을 완전히 사멸시키기는 어려우며, 살아남은 포자는 유통과정 중, 적정 온도와 시간이 경과함에 따라, 영향 세포로 발아하여 게맛살의 부패에 영향을 미친다. 이러한 부패세균의 증식에 있어서 초기균수와 온도의 영향을 조사한 결과, 초기균수에 따른 최대증식속도상수(k)와 유도기(LT), 세대시간(GT)은 유의적인 차이가 없었으며, 온도의 영향이 지배적인 것으로 나타났다. 또한 본 실험에서 유도기(LT)와 온도의 관계는 $L(hr)=2.5219e^{-0.2467{\cdot}T}$의 관계가 성립하며, square root model과 polynomial model을 이용, 온도와 초기균수에 대한 최대증식속도상수(k)를 정량화한 정량평가모델을 개발하였으며, 그 식은 다음과 같다. $$Square\;root\;model:\;{\sqrt{k}}=0.0267\;(T-3.5089)$$$$Polynomial model:\;k=-0.2160+0.0241T-0.01999A_0$$ 온도와 초기균수에 대한 최대증식속도상수(k)의 정량평가모델로부터 특정온도와 초기 균수에서 최대증식속도상수(k)를 계산할 수 있으며, 계산된 최대증식속도상수(k)를 균의 기본 증식 모델인 Gomperz model에 적용하여 균의 성장을 예측할 수 있었다.
수산식품에서 문제가 되는 식중독 균인 V. parahaemolyticus를 대상으로 온도, pH 및 초기균수에 따른 균의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. $1.0{\times}10^{2},\;1.0{\times}10^{3},\;1.0{\times}10^{4}\;CFU/mL$의 각 초기균수 조건에서 실험치와 예측치의 상관계수는 각각 0.966, 0.979, 0.965으로 나타났다. 또한, 초기균수를 고려하지 않은 모델식은 상관계수가 0.966으로 다음과 같이 나타났다. Polynomial model: $$k=1.10{\cdot}\exp(-0.5(((T-34.14)/9.09)^{2}+((pH-6.59)/4.68)^{2}))$$ 균의 증식 지표치인 최대증식속도상수 k는 온도에 지배적인 영향을 받았으며, pH 및 초기균수에 따른 유의적인 차이는 없었으므로 (P>0.05), k와 온도와의 관계식인 square root model로 나타내었다. Square root model: $${\sqrt{k}\;0.06(T-9.55)[1-\exp(0.07(T-49.98))]$$ V. parahaemolyticus의 경우, square root model에 의한 실험치와 예측치의 상관계수는 0.977로 polynomial model보다 높은 적용성을 나타내었다.
The aim of this research was to estimate the effect of temperature and develop predictive models for the growth of total viable cells (TVC) and Escherichia coli (EC) on chicken breast under aerobic and various temperature conditions. The primary models were determined by Baranyi model. The secondary models for the specific growth rate (SGR) and lag time (LT), as a function of storage temperature, were developed by the polynomial model. The initial contamination level of chicken breasts was around 4.3 Log CFU/g of TVC and 1.0 Log CFU/g of E. coli. During 216 h of storage, SGR of TVC showed 0.05, 0.15, and 0.54 Log CFU/g/h at 5, 15, and $25^{\circ}C$. Also, the growth tendency of EC was similar to those of TVC. As storage temperature increased, the values of SGR of microorganisms increased dramatically and the values of LT decreased inversely. The predicted growth models with experimental data were evaluated by $B_f$, $A_f$, RMSE, and $R^2$. These values indicated that these developed models were reliable to express the growth of TVC and EC on chicken breasts. The temperature changes of distribution and showcase in markets might affect the growth of microorganisms and spoilage of chicken breast mainly.
Lee, Na-Kyoung;Ahn, Sin Hye;Lee, Joo-Yeon;Paik, Hyun-Dong
한국축산식품학회지
/
제35권1호
/
pp.108-113
/
2015
The purpose of this study was to develop predictive models for the growth of Listeria monocytogenes in pork Bulgogi at various storage temperatures. A two-strain mixture of L. monocytogenes (ATCC 15313 and isolated from pork Bulgogi) was inoculated on pork Bulgogi at 3 Log CFU/g. L. monocytogenes strains were enumerated using general plating method on Listeria selective medium. The inoculated samples were stored at 5, 15, and $25^{\circ}C$ for primary models. Primary models were developed using the Baranyi model equations, and the maximum specific growth rate was shown to be dependent on storage temperature. A secondary model of growth rate as a function of storage temperature was also developed. As the storage temperature increased, the lag time (LT) values decreased dramatically and the specific growth rate of L. monocytogenes increased. The mathematically predicted growth parameters were evaluated based on the modified bias factor ($B_f$), accuracy factor ($A_f$), root mean square error (RMSE), coefficient of determination ($R^2$), and relative errors (RE). These values indicated that the developed models were reliably able to predict the growth of L. monocytogenes in pork Bulgogi. Hence, the predictive models may be used to assess microbiological hygiene in the meat supply chain as a function of storage temperature.
The aim of this research was to develop predictive models for the growth of spoilage bacteria (total viable cells, Pseudomonas spp., and lactic acid bacteria) on frankfurters and to estimate the shelf-life of frankfurters under aerobic conditions at various storage temperatures (5, 15, and $25^{\circ}C$). The primary models were determined using the Baranyi model equation. The secondary models for maximum specific growth rate and lag time as functions of temperature were developed by the polynomial model equation. During 21 d of storage under various temperature conditions, lactic acid bacteria showed the longest lag time and the slowest growth rate among spoilage bacteria. The growth patterns of total viable cells and Pseudomonas spp. were similar each other. These data suggest that Pseudomonas spp. might be the dominant spoilage bacteria on frankfurters. As storage temperature increased, the growth rate of spoilage bacteria also increased and the lag time decreased. Furthermore, the shelf-life of frankfurters decreased from 7.0 to 4.3 and 1.9 (d) under increased temperature conditions. These results indicate that the most significant factor for spoilage bacteria growth is storage temperature. The values of $B_f$, $A_f$, RMSE, and $R^2$ indicate that these models were reliable for identifying the point of microbiological hazard for spoilage bacteria in frankfurters.
The objective of this study was to develop a predictive growth model for Bacillus cereus in nutrient broth and validate the developed growth model in blanched vegetables. After inoculating B. cereus into nutrient broth, growth of B. cereus was investigated at 13, 17, 24, 30 and $35^{\circ}C$. Lag time (LT) decreased while specific growth rate (SGR) increased with an increase in storage temperature. Growth of B. cereus was not observed at temperatures lower than $12^{\circ}C$. Secondary growth models were developed to describe primary model parameters, including LT and SGR. Model performance was evaluated based on bias factor ($B_f$) and accuracy factor ($A_f$). In addition, we inoculated B. cereus into blanched vegetables stored at 13, 24, $35^{\circ}C$ and observed the growth kinetics of B. cereus in five different blanched vegetables. Growth of B. cereus was most delayed on Doraji at $13^{\circ}C$ and was not observed on Gosari at $13^{\circ}C$. Growth of B. cereus at $35^{\circ}C$ was significantly (p<0.05) slower on Gosari than on other blanched vegetables. The developed secondary LT model for broth in this study was suitable to predict growth of B. cereus on Doraji and Gosari, whereas the SGR model was only suitable for predicting the growth of B. cereus on mung bean sprout.
Almost all existing software reliability models are based on the assumptions of he software usage and software failure process. There, therefore, is no universally applicable software reliability model. To develop a universal software reliability model this paper suggests the predictive filter as a general software reliability prediction model for time domain failure data. Its usefulness is empirically verified by analyzing the failure datasets obtained from 14 different software projects. Based on the average relative prediction error, the suggested predictive filter is compared with other well-known neural network models and statistical software reliability growth models. Experimental results show that the predictive filter generally results in a simple model and adapts well across different software projects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.