• Title/Summary/Keyword: Predictive Controller

Search Result 278, Processing Time 0.056 seconds

Unit Response Optimizer mode Design of Ultra Super Critical Coal-Fired Power Plant based on Fuzzy logic & Model Predictive Controller (퍼지 로직 및 모델 예측 제어기 적용을 통한 초초임계압 화력발전소 부하 응답 최적화 운전 방법 설계)

  • Oh, Ki-Yong;Kim, Ho-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2285-2290
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant component. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control process of power plant in ultra super critical point because that point has highly nonlinear characteristics. In this paper, new control logic, Unit Response Optimizer Controller(URO Controller) which is based on Fuzzy logic and Model Predictive Controller, is introduced for better performance. Then its performance is tested and analyzed with design guideline.

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

A Pressurized Water Reactor Power Controller Using Model Predictive Control Optimized by a Genetic Algorithm (유전자 알고리즘에 의해 최적화된 모델예측제어를 이용한 PWR 출력제어기)

  • Na, Man-Gyun;Hwang, In-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.104-106
    • /
    • 2005
  • In this work, a PWR reactor core dynamics is identified online by a recursive least squares method. Based on this identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to design an automatic controller for thermal power control in PWRs. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired one, and the variation of the control rod positions. Also, the objectives are subject to maximum and minimum control rod positions and maximum control rod speed. Therefore, the genetic algorithm that is appropriate to accomplish multiple objectives is used to optimize the model predictive controller. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), is used to verify the proposed controller for a nuclear reactor. From results of numerical simulation to check the performance of the proposed controller at the 5%/min ramp increase or decrease of a desired load and its 10% step increase or decrease which are design requirements, it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

  • PDF

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1915-1919
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2503-2508
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will present the improvements of predictive controller and accuracy of the current controller.

  • PDF

Optimization of Mobile Robot Predictive Controllers Under General Constraints (일반제한조건의 이동로봇예측제어기 최적화)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.602-610
    • /
    • 2018
  • The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.

Attitude control system implementation for a helicopter propeller setup using TMS320C31 (TMS320C31을 이용한 모형 헬리콥터의 자세제어 시스템 실현)

  • 박기훈;손원기;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.329-332
    • /
    • 1997
  • This paper deals with the attitude control problem of nonlinear MIMO propeller setup. Multivariable GPC[Generalized Predictive Control] is adopted as the main controller, and it is implemented by TMS320C31 in the current paper. The main object of control is to move the propellers to wanted positions. System identification is performed to configure the system. Performance of the multivariable predictive controller implemented is shown via some experiments, which shows the controller meets the adequate control purpose.

  • PDF

A New Predictive Current Controller for a PMSM with consideration of calculation delay

  • Moon H.T.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.336-340
    • /
    • 2001
  • In a digital system, there are inevitable delays in calculations and applying the inverter output voltages to the motor terminals. Because of the delays, the conventional predictive current controller implemented in the digital system has large overshoot and large harmonics. A new predictive current controller, considering the delays, for a permanent magnet synchronous motor (PMSM) is presented. The effectiveness and feasibilities are shown by experimental results.

  • PDF

Compensation of Network Delay Using Predictive Controller (예측제어기를 이용한 네트워크 시간지연 보상)

  • 허화라;박재한이장명
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.243-246
    • /
    • 1998
  • A predictive controller is designed based upon stochastic methods for compensation of network time delay which caused by the spatial separation between controllers and actuators. Current commands are generated by using time varying probability functions which can be defined according to the values of previous control inputs and actual outputs. To demonstrate the effect of this control methodology, simulation experiments are performed. The results show that even an unstabilized system by a long time delay can be stabilized with this predictive controller.

  • PDF

Design of an adaptive fuzzy model predictive controller for combustion control of refuse incineration plant (쓰레기 소각로의 효율적인 연소제어를 위한 적응 퍼지모델 예측제어기 설계)

  • 박종진;강신준;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.134-138
    • /
    • 1996
  • Refuse incineration plant operations involve many kinds of uncertain factors, such as the variable physical properties of refuse as fuel and the complexity of the burning phenomenon. That makes it very difficult apply conventional control methods to the combustion control of the refuse. In this paper, an adaptive fuzzy model predictive controller is proposed for the combustion control of the refuse. In this paper, an adaptive fuzzy model predictive controller is proposed for the combustion control of the refuse. And computer simulation was carried out to evaluate performance of the proposed controller.

  • PDF