• Title/Summary/Keyword: Predictive Control

Search Result 1,074, Processing Time 0.024 seconds

Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots

  • Lee, Seung-Mok;Kim, Hanguen;Lee, Serin;Myung, Hyun
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2014
  • This paper deals with the problem of steering a group of mobile robots along a reference path while maintaining a desired geometric formation. To solve this problem, the overall formation is decomposed into numerous geometric patterns composed of pairs of robots, and the state of the geometric patterns is defined. A control algorithm for the problem is proposed based on the Nash equilibrium strategies incorporating receding horizon control (RHC), also known as model predictive control (MPC). Each robot calculates a control input over a finite prediction horizon and transmits this control input to its neighbor. Considering the motion of the other robots in the prediction horizon, each robot calculates the optimal control strategy to achieve its goals: tracking a reference path and maintaining a desired formation. The performance of the proposed algorithm is validated using numerical simulations.

Design of Self-Tuning PID Controller Using GPC Method (GPC기법을 이용한 자기동조 PID제어기 설계)

  • Yoon, K.S.;Lee, M.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.139-147
    • /
    • 1996
  • PID control has been widely used for real control systems. Particularly, there are many researches on control schemes of tuning PID gains. However, to the best of our knowledge, there is no result for discrete-time systems with unknown time-delay and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown papameters and unknown time-delay system. A numerical simulation was presented to illustrate the effectiveness of this method.

  • PDF

Reducing Common-Mode Voltage of Three-Phase VSIs using the Predictive Current Control Method based on Reference Voltage

  • Mun, Sung-ki;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.712-720
    • /
    • 2015
  • A model predictive current control (MPCC) method that does not employ a cost function is proposed. The MPCC method can decrease common-mode voltages in loads fed by three-phase voltage-source inverters. Only non-zero-voltage vectors are considered as finite control elements to regulate load currents and decrease common-mode voltages. Furthermore, the three-phase future reference voltage vector is calculated on the basis of an inverse dynamics model, and the location of the one-step future voltage vector is determined at every sampling period. Given this location, a non-zero optimal future voltage vector is directly determined without repeatedly calculating the cost values obtained by each voltage vector through a cost function. Without utilizing the zero-voltage vectors, the proposed MPCC method can restrict the common-mode voltage within ± Vdc/6, whereas the common-mode voltages of the conventional MPCC method vary within ± Vdc/2. The performance of the proposed method with the reduced common-mode voltage and no cost function is evaluated in terms of the total harmonic distortions and current errors of the load currents. Simulation and experimental results are presented to verify the effectiveness of the proposed method operated without a cost function, which can reduce the common-mode voltage.

Finite Control Set Model Predictive Current Control for a Cascaded Multilevel Inverter

  • Razia Sultana, W.;Sahoo, Sarat Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1674-1683
    • /
    • 2016
  • In this paper, a Finite Control Set Model Predictive Control (FCS-MPC) for a five level cascaded multilevel inverter (CMLI) with reduced switch topology is proposed. Five switches are used here instead of conventionally used eight switches. The main contribution of this paper is to make the MPC controller work for the reduced switch topology using only 19 voltage vectors in place of conventional 61 voltage vectors for a five level CMLI. This simplifies the execution of the MPC algorithm, paving a way for the significant reduction in the computational time. The controller makes use of the excellent ability of MPC to multitask, by adding one more objective which is to reduce the average switching frequency in addition to controlling the load current. This is especially important, since switching losses and therefore switching frequency is significant for high-power applications. The trade-off of this MPC is that the current is not as smooth as the 61 vector scheme, but well within the limits of IEEE standards. The results shown prove that this MPC works well in steady state and dynamic conditions too.

Space Vector Modulation based on Model Predictive Control to Reduce Current Ripples with Subdivided Space Voltage Vectors (전류 리플 저감을 위한 세분화된 공간전압벡터를 이용한 모델 예측 제어 기반의 SVM 방법)

  • Moon, Hyun-Cheol;Lee, June-Seok;Lee, June-Hee;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.18-26
    • /
    • 2017
  • This paper proposes the model predictive control with space vector modulation (SVM) method for current control of voltage-source inverter. Unlike the conventional method using a limited number of voltage vectors by switching states, the proposed method can consider various voltage vectors to identify the optimized voltage vector. The various voltage vectors are obtained by subdividing existing voltage vectors. The optimized voltage vector that minimizes the cost function is selected and applied to the inverter by using the SVM. The various voltage vectors and SVM reduce current ripples in the output AC side of the inverter compared with the conventional method. The effectiveness and performance of the proposed method are verified through simulation and experiment with a three-phase two-level voltage-source grid-connected inverter.

A Novel Modulation Method for Three-Level Inverter Neutral Point Potential Oscillation Elimination

  • Yao, Yuan;Kang, Longyun;Zhang, Zhi
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.445-455
    • /
    • 2018
  • A novel algorithm is proposed to regulate the neutral point potential in neutral point clamped three-level inverters. Oscillations of the neutral point potential and an unbalanced dc-link voltage cause distortions of the output voltage. Large capacitors, which make the application costly and bulky, are needed to eliminate oscillations. Thus, the algorithm proposed in this paper utilizes the finite-control-set model predictive control and the multistage medium vector to solve these issues. The proposed strategy consists of a two-step prediction and a cost function to evaluate the selected multistage medium vector. Unlike the virtual vector method, the multistage medium vector is a mixture of the virtual vector and the original vector. In addition, its amplitude is variable. The neutral point current generated by it can be used to adjust the neutral point potential. When compared with the virtual vector method, the multistage medium vector contributes to decreasing the regulation time when the modulation index is high. The vectors are rearranged to cope with the variable switching frequency of the model predictive control. Simulation and experimental results verify the validity of the proposed strategy.

Self-Tuning Predictive Control with Application to Steam Generator (증기 발생기 수위제어를 위한 자기동조 예측제어)

  • Kim, Chang-Hwoi;Sang Jeong lee;Ham, Chang-Shik
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.833-844
    • /
    • 1995
  • In self-tuning predictive control algorithm for steam generator is presented. The control algorithm is derived by suitably modifying the generalized predictive control algorithm. The main feature of the unposed method relies on considering the measurable disturbance and a simple adaptive scheme for obtaining the controller gain when the parameters of the plant are unknown. This feature makes the proposed approach particularly appealing for water level control of steam generator when measurable disturbance is used. In order to evaluate the performance of the proposed algorithm, computer simulations are done for an PWR steam generator model. Simulation result show satisfactory performances against load variations and steam flow rate estimation errors. It can be also observed that the proposed algorithm exhibit better responses than a conventional PI controller.

  • PDF

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.

An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter (모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘)

  • Kim, I-Gim;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.

Development of Predictive Smoothing Voter using Exponential Smoothing Method (지수 평활법을 이용한 Predictive Smoothing Voter 개발)

  • Kim, Man-Ho;Lim, Chang-Hwy;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.34-42
    • /
    • 2006
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires(steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive smoothing voter that can filter out most erroneous values and noise. In addition, several numerical simulation results are given where the predictive smoothing voter outperforms well-known average and median voters.