• Title/Summary/Keyword: Predictive Coding Scheme

Search Result 24, Processing Time 0.019 seconds

High Compression Image Coding with BTC Parameters (BTC 파라메타를 이용한 고압축 영상부호화)

  • Shim, Young-Serk;Lee, Hark-Jun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.140-146
    • /
    • 1989
  • An efficient quantization and encoding of BTC (Block Truncation Coding) parameters {($Y_{\alpha},\;Y_{\beta}),\;P_{{\beta}/{\beta}}$} are investigated, In our algorithm 4${\times}$4 blocks are classified into flat or edge block. While edge block is represented by two approximation level $Y_{\alpha},\;Y_{\beta}$ with label plane $P_{{\beta}/{\beta}}$, flat block is represented by single approximation level Y. The approximation levels Y, $Y_{\alpha}$ and $Y_{\beta}$ are encoded by predictive quatization specially designed, and the label plane $P_{{\beta}/{\beta}}$ is tried to be encoded using stored 32 reference plantes. The performance of the proposed scheme has appeared comparable to much more complex transform coding in terms of SNR, although it requires more study on the representation of small slope in background.

  • PDF

A Study on the Wavelet Based Algorithm for Lossless and Lossy Image Compression (무손실.손실 영상 압축을 위한 웨이브릿 기반 알고리즘에 관한 연구)

  • An, Chong-Koo;Chu, Hyung-Suk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.124-130
    • /
    • 2006
  • A wavelet-based image compression system allowing both lossless and lossy image compression is proposed in this paper. The proposed algorithm consists of the two stages. The first stage uses the wavelet packet transform and the quad-tree coding scheme for the lossy compression. In the second stage, the residue image taken between the original image and the lossy reconstruction image is coded for the lossless image compression by using the integer wavelet transform and the context based predictive technique with feedback error. The proposed wavelet-based algorithm, allowing an optional lossless reconstruction of a given image, transmits progressively image materials and chooses an appropriate wavelet filter in each stage. The lossy compression result of the proposed algorithm improves up to the maximum 1 dB PSNR performance of the high frequency image, compared to that of JPEG-2000 algorithm and that of S+P algorithm. In addition, the lossless compression result of the proposed algorithm improves up to the maximum 0.39 compression rates of the high frequency image, compared to that of the existing algorithm.

Audio Stream Delivery Using AMR(Adaptive Multi-Rate) Coder with Forward Error Correction in the Internet (인터넷 환경에서 FEC 기능이 추가된 AMR음성 부호화기를 이용한 오디오 스트림 전송)

  • 김은중;이인성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2027-2035
    • /
    • 2001
  • In this paper, we present an audio stream delivery using the AMR (Adaptive Multi-Rate) coder that was adopted by ETSI and 3GPP as a standard vocoder for next generation IMT-2000 service in which includes combined sender (FEC) and receiver reconstruction technique in the Internet. By use of the media-specific FEC scheme, the possibility to recover lost packets can be much increased due to the addition of repair data to a main data stream, by which the contents of lost packets can be recovered. The AMR codec is based on the code-excited linear predictive (CELP) coding model. So we use a frame erasure concealment for CELP-based coders. The proposed scheme is evaluated with ITU-T G.729 (CS-ACELP) coder and AMR - 12.2 kbit/s through the SNR (Signal to Noise Ratio) and the MOS (Mean Opinion Score) test. The proposed scheme provides 1.1 higher in Mean Opinion Score value and 5.61 dB higher than AMR - 12.2 kbit/s in terms of SNR in 10% packet loss, and maintains the communicab1e quality speech at frame erasure rates lop to 20%.

  • PDF

Improved Error Detection Scheme Using Data Hiding in Motion Vector for H.264/AVC (움직임 벡터의 정보 숨김을 이용한 H.264/AVC의 향상된 오류 검출 방법)

  • Ko, Man-Geun;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • The compression of video data is intended for real-time transmission of band-limited channels. Compressed video bit-streams are very sensitive to transmission error. If we lose packets or receive them with errors during transmission, not only the current frame will be corrupted, but also the error will propagate to succeeding frames due to the spatio-temporal predictive coding structure of sequences. Error detection and concealment is a good approach to reduce the bad influence on the reconstructed visual quality. To increase concealment efficiency, we need to get some more accurate error detection algorithm. In this paper, We hide specific data into the motion vector difference of each macro-block, which is obtained from the procedure of inter prediction mode in H.264/AVC. Then, the location of errors can be detected easily by checking transmitted specific data in decoder. We verified that the proposed algorithm generates good performances in PSNR and subjective visual quality through the computer simulation by H.324M mobile simulation tool.