• Title/Summary/Keyword: Predictive Accuracy

Search Result 792, Processing Time 0.023 seconds

Toward understanding learning patterns in an open online learning platform using process mining (프로세스 마이닝을 활용한 온라인 교육 오픈 플랫폼 내 학습 패턴 분석 방법 개발)

  • Taeyoung Kim;Hyomin Kim;Minsu Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.285-301
    • /
    • 2023
  • Due to the increasing demand and importance of non-face-to-face education, open online learning platforms are getting interests both domestically and internationally. These platforms exhibit different characteristics from online courses by universities and other educational institutions. In particular, students engaged in these platforms can receive more learner autonomy, and the development of tools to assist learning is required. From the past, researchers have attempted to utilize process mining to understand realistic study behaviors and derive learning patterns. However, it has a deficiency to employ it to the open online learning platforms. Moreover, existing research has primarily focused on the process model perspective, including process model discovery, but lacks a method for the process pattern and instance perspectives. In this study, we propose a method to identify learning patterns within an open online learning platform using process mining techniques. To achieve this, we suggest three different viewpoints, e.g., model-level, variant-level, and instance-level, to comprehend the learning patterns, and various techniques are employed, such as process discovery, conformance checking, autoencoder-based clustering, and predictive approaches. To validate this method, we collected a learning log of machine learning-related courses on a domestic open education platform. The results unveiled a spaghetti-like process model that can be differentiated into a standard learning pattern and three abnormal patterns. Furthermore, as a result of deriving a pattern classification model, our model achieved a high accuracy of 0.86 when predicting the pattern of instances based on the initial 30% of the entire flow. This study contributes to systematically analyze learners' patterns using process mining.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

Neutrophil to Lymphocyte Ratio and Serum Biomarkers : A Potential Tool for Prediction of Clinically Relevant Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage

  • Osman Kula;Burak Gunay;Merve Yaren Kayabas;Yener Akturk;Ezgi Kula;Banu Tutunculer;Necdet Sut;Serdar Solak
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.681-689
    • /
    • 2023
  • Objective : Subarachnoid hemorrhage (SAH) is a condition characterized by bleeding in the subarachnoid space, often resulting from the rupture of a cerebral aneurysm. Delayed cerebral ischemia caused by vasospasm is a significant cause of mortality and morbidity in SAH patients, and inflammatory markers such as systemic inflammatory response index (SIRI), systemic inflammatory index (SII), neutrophil-to-lymphocyte ratio (NLR), and derived NLR (dNLR) have shown potential in predicting clinical vasospasm and outcomes in SAH patients. This article aims to investigate the relationship between inflammatory markers and cerebral vasospasm after aneurysmatic SAH (aSAH) and evaluate the predictive value of various indices, including SIRI, SII, NLR, and dNLR, in predicting clinical vasospasm. Methods : A retrospective analysis was performed on a cohort of 96 patients who met the inclusion criteria out of a total of 139 patients admitted Trakya University Hospital with a confirmed diagnosis of aSAH between January 2013 and December 2021. Diagnostic procedures, neurological examinations, and laboratory tests were performed to assess the patients' condition. The Student's t-test compared age variables, while the chi-square test compared categorical variables between the non-vasospasm (NVS) and vasospasm (VS) groups. Receiver operating characteristic (ROC) curve analyses were used to evaluate the diagnostic accuracy of laboratory parameters, calculating the area under the ROC curve, cut-off values, sensitivity, and specificity. A significance level of p<0.05 was considered statistically significant. Results : The study included 96 patients divided into two groups : NVS and VS. Various laboratory parameters, such as NLR, SII, and dNLR, were measured daily for 15 days, and statistically significant differences were found in NLR on 7 days, with specific cut-off values identified for each day. SII showed a significant difference on day 9, while dNLR had significant differences on days 2, 4, and 9. Graphs depicting the values of these markers for each day are provided. Conclusion : Neuroinflammatory biomarkers, when used alongside radiology and scoring scales, can aid in predicting prognosis, determining severity and treatment decisions for aSAH, and further studies with larger patient groups are needed to gain more insights.

Why Culture Matters: A New Investment Paradigm for Early-stage Startups (조직문화의 중요성: 초기 스타트업에 대한 투자 패러다임의 전환)

  • Daehwa Rayer Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • In the midst of the current turbulent global economy, traditional investment metrics are undergoing a metamorphosis, signaling the onset of what's often referred to as an "Investment cold season". Early-stage startups, despite their boundless potential, grapple with immediate revenue constraints, intensifying their pursuit of critical investments. While financial indicators once took center stage in investment evaluations, a notable paradigm shift is underway. Organizational culture, once relegated to the sidelines, has now emerged as a linchpin in forecasting a startup's resilience and enduring trajectory. Our comprehensive research, integrating insights from CVF and OCAI, unveils the intricate relationship between organizational culture and its magnetic appeal to investors. The results indicate that startups with a pronounced external focus, expertly balanced with flexibility and stability, hold particular allure for investment consideration. Furthermore, the study underscores the pivotal role of adhocracy and market-driven mindsets in shaping investment desirability. A significant observation emerges from the study: startups, whether they secured investment or failed to do so, consistently display strong clan culture, highlighting the widespread importance of nurturing a positive employee environment. Leadership deeply anchored in market culture, combined with an unwavering commitment to innovation and harmonious organizational practices, emerges as a potent recipe for attracting investor attention. Our model, with an impressive 88.3% predictive accuracy, serves as a guiding light for startups and astute investors, illuminating the intricate interplay of culture and investment success in today's economic landscape.

  • PDF

Leveraging LLMs for Corporate Data Analysis: Employee Turnover Prediction with ChatGPT (대형 언어 모델을 활용한 기업데이터 분석: ChatGPT를 활용한 직원 이직 예측)

  • Sungmin Kim;Jee Yong Chung
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.19-47
    • /
    • 2024
  • Organizational ability to analyze and utilize data plays an important role in knowledge management and decision-making. This study aims to investigate the potential application of large language models in corporate data analysis. Focusing on the field of human resources, the research examines the data analysis capabilities of these models. Using the widely studied IBM HR dataset, the study reproduces machine learning-based employee turnover prediction analyses from previous research through ChatGPT and compares its predictive performance. Unlike past research methods that required advanced programming skills, ChatGPT-based machine learning data analysis, conducted through the analyst's natural language requests, offers the advantages of being much easier and faster. Moreover, its prediction accuracy was found to be competitive compared to previous studies. This suggests that large language models could serve as effective and practical alternatives in the field of corporate data analysis, which has traditionally demanded advanced programming capabilities. Furthermore, this approach is expected to contribute to the popularization of data analysis and the spread of data-driven decision-making (DDDM). The prompts used during the data analysis process and the program code generated by ChatGPT are also included in the appendix for verification, providing a foundation for future data analysis research using large language models.

Application of Point Shearwave Elastography to Breast Ultrasonography: Initial Experience Using "S-Shearwave" in Differential Diagnosis (Point Shearwave Elastography의 유방 초음파에서의 적용: "S-Shearwave"를 이용한 감별진단의 초기경험)

  • Myung Hwan Lee;Eun-Kyung Kim;Eun Ju Lee;Ha Yan Kim;Jung Hyun Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.157-165
    • /
    • 2020
  • Purpose To evaluate the optimal measurement location, cut-off value, and diagnostic performance of S-Shearwave in differential diagnosis of breast masses seen on ultrasonography (US). Materials and Methods During the study period, 225 breast masses in 197 women were included. S-Shearwave measurements were made by applying a square region-of-interest automatically generated by the US machine. Shearwave elasticity was measured three times at four different locations of the mass, and the highest shearwave elasticity was used for calculating the optimal cut-off value. Diagnostic performance was evaluated by using the area under the receiving operator characteristic curve (AUC). Results Of the 225 breast masses, 156 (69.3%) were benign and 69 (30.7%) were malignant. Mean S-Shearwave values were significantly higher for malignant masses (108.0 ± 70.0 kPa vs. 43.4 ± 38.3 kPa; p < 0.001). No significant differences were seen among AUC values at different measurement locations. With a cut-off value of 41.9 kPa, S-Shearwave showed 85.7% sensitivity, 63.9% specificity, 70.7% accuracy, and positive and negative predictive values of 51.7% and 90.8%, respectively. The AUCs for US and S-Shearwave did not show significant differences (p = 0.179). Conclusion S-Shearwave shows comparable diagnostic performance to that of grayscale US that can be applied for differential diagnosis of breast masses seen on US.

Study on the Agreement Values of Pulmonary Arterial Hypertension Measured by Cardiac Sonographers (심장초음파 검사자 간의 폐동맥고혈압 진단 측정값 일치도 분석 연구)

  • Seol Hwa KIM;Sundo JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.269-275
    • /
    • 2023
  • Echocardiography is a non-invasive method that is useful for diagnosing pulmonary arterial hypertension. It is known that echocardiography depends on the experience, education, and knowledge level of the cardiac sonographer. This study aimed to compare the agreement values between cardiac sonographer with different practical experiences in the diagnosis of pulmonary arterial hypertension using echocardiography. Three readers re-evaluated the echocardiography images of 148 patients who were diagnosed with pulmonary arterial hypertension at the S Medical Center from January 1, 2020, to December 31, 2020. The echocardiography values measured by each reader were compared and analyzed. The results of the analysis of discrete variables revealed that the agreement values of the cardiac sonographers showed excellent consistency for both reader 3 and the cardiologist group, indicating that more experience leads to better predictive accuracy for diagnosis of the condition. Furthermore, in terms of continuous variables, all the cardiac sonographer demonstrated good agreement in the measured values of the right atrium, which was easier to assess and clearer than the structurally complex measurements of the right ventricle. This study represents the first analysis in Korea of the agreement values measured by medical technologists who are cardiac sonographers.

Automated Versus Handheld Breast Ultrasound for Evaluating Axillary Lymph Nodes in Patients With Breast Cancer

  • Sun Mi Kim;Mijung Jang;Bo La Yun;Sung Ui Shin;Jiwon Rim;Eunyoung Kang;Eun-Kyu Kim;Hee-Chul Shin;So Yeon Park;Bohyoung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.146-156
    • /
    • 2024
  • Objective: Automated breast ultrasound (ABUS) is a relevant imaging technique for early breast cancer diagnosis and is increasingly being used as a supplementary tool for mammography. This study compared the performance of ABUS and handheld ultrasound (HHUS) in detecting and characterizing the axillary lymph nodes (LNs) in patients with breast cancer. Materials and Methods: We retrospectively reviewed the medical records of women with recently diagnosed early breast cancer (≤ T2) who underwent both ABUS and HHUS examinations for axilla (September 2017-May 2018). ABUS and HHUS findings were compared using pathological outcomes as reference standards. Diagnostic performance in predicting any axillary LN metastasis and heavy nodal-burden metastases (i.e., ≥ 3 LNs) was evaluated. The ABUS-HHUS agreement for visibility and US findings was calculated. Results: The study included 377 women (53.1 ± 11.1 years). Among 385 breast cancers in 377 patients, 101 had axillary LN metastases and 30 had heavy nodal burden metastases. ABUS identified benign-looking or suspicious axillary LNs (average, 1.4 ± 0.8) in 246 axillae (63.9%, 246/385). According to the per-breast analysis, the sensitivity, specificity, positive and negative predictive values, and accuracy of ABUS in predicting axillary LN metastases were 43.6% (44/101), 95.1% (270/284), 75.9% (44/58), 82.6% (270/327), and 81.6% (314/385), respectively. The corresponding results for HHUS were 41.6% (42/101), 95.1% (270/284), 75.0% (42/56), 82.1% (270/329), and 81.0% (312/385), respectively, which were not significantly different from those of ABUS (P ≥ 0.53). The performance results for heavy nodal-burden metastases were 70.0% (21/30), 89.6% (318/355), 36.2% (21/58), 97.3% (318/327), and 88.1% (339/385), respectively, for ABUS and 66.7% (20/30), 89.9% (319/355), 35.7% (20/56), 97.0% (319/329), and 88.1% (339/385), respectively, for HHUS, also not showing significant difference (P ≥ 0.57). The ABUS-HHUS agreement was 95.9% (236/246; Cohen's kappa = 0.883). Conclusion: Although ABUS showed limited sensitivity in diagnosing axillary LN metastasis in early breast cancer, it was still useful as the performance was comparable to that of HHUS.

Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy

  • Kyung Min Kim;Heewon Hwang;Beomseok Sohn;Kisung Park;Kyunghwa Han;Sung Soo Ahn;Wonwoo Lee;Min Kyung Chu;Kyoung Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1281-1289
    • /
    • 2022
  • Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.