• 제목/요약/키워드: Predictive Accuracy

검색결과 828건 처리시간 0.03초

머신러닝 기반 한국 청소년의 자살 생각 예측 모델 (Machine learning-based Predictive Model of Suicidal Thoughts among Korean Adolescents.)

  • YeaJu JIN;HyunKi KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2023
  • This study developed models using decision forest, support vector machine, and logistic regression methods to predict and prevent suicidal ideation among Korean adolescents. The study sample consisted of 51,407 individuals after removing missing data from the raw data of the 18th (2022) Youth Health Behavior Survey conducted by the Korea Centers for Disease Control and Prevention. Analysis was performed using the MS Azure program with Two-Class Decision Forest, Two-Class Support Vector Machine, and Two-Class Logistic Regression. The results of the study showed that the decision forest model achieved an accuracy of 84.8% and an F1-score of 36.7%. The support vector machine model achieved an accuracy of 86.3% and an F1-score of 24.5%. The logistic regression model achieved an accuracy of 87.2% and an F1-score of 40.1%. Applying the logistic regression model with SMOTE to address data imbalance resulted in an accuracy of 81.7% and an F1-score of 57.7%. Although the accuracy slightly decreased, the recall, precision, and F1-score improved, demonstrating excellent performance. These findings have significant implications for the development of prediction models for suicidal ideation among Korean adolescents and can contribute to the prevention and improvement of youth suicide.

Predictive Modeling of the Growth and Survival of Listeria monocytogenes Using a Response Surface Model

  • Jin, Sung-Sik;Jin, Yong-Guo;Yoon, Ki-Sun;Woo, Gun-Jo;Hwang, In-Gyun;Bahk, Gyung-Jin;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.715-720
    • /
    • 2006
  • This study was performed to develop a predictive model for the growth kinetics of Listeria monocytogenes in tryptic soy broth (TSB) using a response surface model with a combination of potassium lactate (PL), temperature, and pH. The growth parameters, specific growth rate (SGR), and lag time (LT) were obtained by fitting the data into the Gompertz equation and showed high fitness with a correlation coefficient of $R^2{\geq}0.9192$. The polynomial model was identified as an appropriate secondary model for SGR and LT based on the coefficient of determination for the developed model ($R^2\;=\;0.97$ for SGR and $R^2\;=\;0.86$ for LT). The induced values that were calculated using the developed secondary model indicated that the growth kinetics of L. monocytogenes were dependent on storage temperature, pH, and PL. Finally, the predicted model was validated using statistical indicators, such as coefficient of determination, mean square error, bias factor, and accuracy factor. Validation of the model demonstrates that the overall prediction agreed well with the observed data. However, the model developed for SGR showed better predictive ability than the model developed for LT, which can be seen from its statistical validation indices, with the exception of the bias factor ($B_f$ was 0.6 for SGR and 0.97 for LT).

저장온도에 따른 마른김(Pyropia pseudolinearis)의 Bacillus cereus 성장예측모델 개발 (Predictive Growth Models of Bacillus cereus on Dried Laver Pyropia pseudolinearis as Function of Storage Temperature)

  • 최만석;김지윤;전은비;박신영
    • 한국수산과학회지
    • /
    • 제53권5호
    • /
    • pp.699-706
    • /
    • 2020
  • Predictive models in food microbiology are used for predicting microbial growth or death rates using mathematical and statistical tools considering the intrinsic and extrinsic factors of food. This study developed predictive growth models for Bacillus cereus on dried laver Pyropia pseudolinearis stored at different temperatures (5, 10, 15, 20, and 25℃). Primary models developed for specific growth rate (SGR), lag time (LT), and maximum population density (MPD) indicated a good fit (R2≥0.98) with the Gompertz equation. The SGR values were 0.03, 0.08, and 0.12, and the LT values were 12.64, 4.01, and 2.17 h, at the storage temperatures of 15, 20, and 25℃, respectively. Secondary models for the same parameters were determined via nonlinear regression as follows: SGR=0.0228-0.0069*T1+0.0005*T12; LT=113.0685-9.6256*T1+0.2079*T12; MPD=1.6630+0.4284*T1-0.0080*T12 (where T1 is the storage temperature). The appropriateness of the secondary models was validated using statistical indices, such as mean squared error (MSE<0.01), bias factor (0.99≤Bf≤1.07), and accuracy factor (1.01≤Af≤1.14). External validation was performed at three random temperatures, and the results were consistent with each other. Thus, these models may be useful for predicting the growth of B. cereus on dried laver.

비소세포폐암 환자의 국소 림프절 전이 발견을 위한 FDG PET의 이용 (The Use of FDG PET for Nodal Staging of Non-Small-Cell Lung Cancer)

  • 백희종;박종호;최창운;임상무;최두환;조경자;원경준;조재일
    • Journal of Chest Surgery
    • /
    • 제32권10호
    • /
    • pp.910-915
    • /
    • 1999
  • Background: Positron emission tomography(PEFT) using fluorine-18 deoxyglucose(FDG), showing increased FDG uptake and retention in malignant cells, has been proven to be useful in differentiating malignant from benign tissues. We indertook the prospective study to compare the accuracy of the whole-body FDG PET with that of the conventional chest computed tomography(CT) for nodal staging of non-small-cell lung cancers(NSCLC). Material and Method: FDG PET and contrast enhanced CT were performed in 36 patients with potentially resectable NSCLC. Each Imaging study was evaluated independently, and nodal stations were localized according to the AJCC regional lymph nodes mapping system. Extensive lymph node dissection(1101 nodes) of ipsi- and contralateral mediastinal nodal stations was performed at thoracotomy and/or mediastinoscopy. Image findings were compared with the histopathologic staging results and were analyzed with the McNema test(p) and Kappa value(k). Result: The sensitivity, specificity, positive predictive value, and negative predictive value of CT for ipsilateral mediastinal nodal staging were 38%, 68%, 25%, 79%, and 61%, and those of PET were 88%, 71%, 47%, 95%, and 75%(p>0.05, K=0.29). When analyzed by individual nodal group(superior, aortopulmonary window, and inferior), the sensitivity, specificity, positive predictive value, and negative predictive value of CT were 27%, 82%, 22%, 85%, and 73%, and those of PET were 60%, 87%, 92%, and 82%(p<0.05, k=0.27). Conclusion: FDG PET in addition to CT appears to be superior to CT alone for mediastinal staging of non-small cell lung cancers.

  • PDF

Influence of voxel size on cone-beam computed tomography-based detection of vertical root fractures in the presence of intracanal metallic posts

  • Yamamoto-Silva, Fernanda Paula;de Oliveira Siqueira, Claudeir Felipe;Silva, Maria Alves Garcia Santos;Fonseca, Rodrigo Borges;Santos, Ananda Amaral;Estrela, Carlos;de Freitas Silva, Brunno Santos
    • Imaging Science in Dentistry
    • /
    • 제48권3호
    • /
    • pp.177-184
    • /
    • 2018
  • Purpose: This study was performed to evaluate the influence of voxel size and the accuracy of 2 cone-beam computed tomography (CBCT) systems in the detection of vertical root fracture (VRF) in the presence of intracanal metallic posts. Materials and Methods: Thirty uniradicular extracted human teeth were selected and randomly divided into 2 groups(VRF group, n=15; and control group, n=15). The VRFs were induced by an Instron machine, and metallic posts were placed in both groups. The scans were acquired by CBCT with 4 different voxel sizes: 0.1 mm and 0.16 mm (for the Eagle 3D V-Beam system) and 0.125 mm and 0.2 mm (for the i-CAT system) (protocols 1, 2, 3, and 4, respectively). Interobserver and intraobserver agreement was assessed using the Cohen kappa test. Sensitivity and specificity were evaluated and receiver operating characteristic analysis was performed. Results: The intraobserver coefficients indicated good (0.71) to very good (0.83) agreement, and the interobserver coefficients indicated moderate (0.57) to very good (0.80) agreement. In respect to the relationship between sensitivity and specificity, a statistically significant difference was found between protocols 1 (positive predictive value: 0.710, negative predictive value: 0.724) and 3 (positive predictive value: 0.727, negative predictive value: 0.632) (P<.05). The least interference due to artifact formation was observed using protocol 2. Conclusion: Protocols with a smaller voxel size and field of view seemed to favor the detection of VRF in teeth with intracanal metallic posts.

Sensitivity, specificity, and predictive value of cardiac symptoms assessed by emergency medical services providers in the diagnosis of acute myocardial infarction: a multi-center observational study

  • Park, Jeong Ho;Moon, Sung Woo;Kim, Tae Yun;Ro, Young Sun;Cha, Won Chul;Kim, Yu Jin;Shin, Sang Do
    • Clinical and Experimental Emergency Medicine
    • /
    • 제5권4호
    • /
    • pp.264-271
    • /
    • 2018
  • Objective For patients with acute myocardial infarction (AMI), symptoms assessed by emergency medical services (EMS) providers have a critical role in prehospital treatment decisions. The purpose of this study was to evaluate the diagnostic accuracy of EMS provider-assessed cardiac symptoms of AMI. Methods Patients transported by EMS to 4 study hospitals from 2008 to 2012 were included. Using EMS and administrative emergency department databases, patients were stratified according to the presence of EMS-assessed cardiac symptoms and emergency department diagnosis of AMI. Cardiac symptoms were defined as chest pain, dyspnea, palpitations, and syncope. Disproportionate stratified sampling was used, and medical records of sampled patients were reviewed to identify an actual diagnosis of AMI. Using inverse probability weighting, verification bias-corrected diagnostic performance was estimated. Results Overall, 92,353 patients were enrolled in the study. Of these, 13,971 (15.1%) complained of cardiac symptoms to EMS providers. A total of 775 patients were sampled for hospital record review. The sensitivity, specificity, positive predictive value, and negative predictive value of EMS provider-assessed cardiac symptoms for the final diagnosis of AMI was 73.3% (95% confidence interval [CI], 70.8 to 75.7), 85.3% (95% CI, 85.3 to 85.4), 3.9% (95% CI, 3.6 to 4.2), and 99.7% (95% CI, 99.7 to 99.8), respectively. Conclusion We found that EMS provider-assessed cardiac symptoms had moderate sensitivity and high specificity for diagnosis of AMI. EMS policymakers can use these data to evaluate the pertinence of specific prehospital treatment of AMI.

A Comparative Study of Predictive Factors for Passing the National Physical Therapy Examination using Logistic Regression Analysis and Decision Tree Analysis

  • Kim, So Hyun;Cho, Sung Hyoun
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권3호
    • /
    • pp.285-295
    • /
    • 2022
  • Objective: The purpose of this study is to use logistic regression and decision tree analysis to identify the factors that affect the success or failurein the national physical therapy examination; and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 76,727 subjects from the physical therapy national examination data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was pass or fail, and the input variables were gender, age, graduation status, and examination area. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In the logistic regression analysis, subjects in their 20s (Odds ratio, OR=1, reference), expected to graduate (OR=13.616, p<0.001) and from the examination area of Jeju-do (OR=3.135, p<0.001), had a high probability of passing. In the decision tree, the predictive factors for passing result had the greatest influence in the order of graduation status (x2=12366.843, p<0.001) and examination area (x2=312.446, p<0.001). Logistic regression analysis showed a specificity of 39.6% and sensitivity of 95.5%; while decision tree analysis showed a specificity of 45.8% and sensitivity of 94.7%. In classification accuracy, logistic regression and decision tree analysis showed 87.6% and 88.0% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. Additionally, whether actual test takers passed the national physical therapy examination could be determined, by applying the constructed prediction model and prediction rate.

Development of a predictive functional control approach for steel building structure under earthquake excitations

  • Mohsen Azizpour;Reza Raoufi;Ehsan Kazeminezhad
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.187-198
    • /
    • 2023
  • Model Predictive Control (MPC) is an advanced control approach that uses the current states of the system model to predict its future behavior. In this article, according to the seismic dynamics of structural systems, the Predictive Functional Control (PFC) method is used to solve the control problem. Although conventional PFC is an efficient control method, its performance may be impaired due to problems such as uncertainty in the structure of state sensors and process equations, as well as actuator saturation. Therefore, it requires the utilization of appropriate estimation algorithms in order to accurately evaluate responses and implement actuator saturation. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering simultaneously the saturation actuator. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering the saturation actuator. Thus, the structural responses are formulated by two estimation models using the H∞ filter. First, the H∞ filter estimates responses using a performance bound (𝜃). Second, the H∞ filter is converted into a Kalman filter in a special case by considering the 𝜃 equal to zero. Therefore, the scheme based on the Kalman filter (KPFC) is considered a comparative model. The proposed method is evaluated through numerical studies on a building equipped with an Active Tuned Mass Damper (ATMD) under near and far-field earthquakes. Finally, HPFC is compared with classical (CPFC) and comparative (KPFC) schemes. The results show that HPFC has an acceptable efficiency in boosting the accuracy of CPFC and KPFC approaches under earthquakes, as well as maintaining a descending trend in structural responses.

A Comparative Study of Predictive Factors for Hypertension using Logistic Regression Analysis and Decision Tree Analysis

  • SoHyun Kim;SungHyoun Cho
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권2호
    • /
    • pp.80-91
    • /
    • 2023
  • Objective: The purpose of this study is to identify factors that affect the incidence of hypertension using logistic regression and decision tree analysis, and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 9,859 subjects from the Korean health panel annual 2019 data provided by the Korea Institute for Health and Social Affairs and National Health Insurance Service. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In logistic regression analysis, those who were 60 years of age or older (Odds ratio, OR=68.801, p<0.001), those who were divorced/widowhood/separated (OR=1.377, p<0.001), those who graduated from middle school or younger (OR=1, reference), those who did not walk at all (OR=1, reference), those who were obese (OR=5.109, p<0.001), and those who had poor subjective health status (OR=2.163, p<0.001) were more likely to develop hypertension. In the decision tree, those over 60 years of age, overweight or obese, and those who graduated from middle school or younger had the highest probability of developing hypertension at 83.3%. Logistic regression analysis showed a specificity of 85.3% and sensitivity of 47.9%; while decision tree analysis showed a specificity of 81.9% and sensitivity of 52.9%. In classification accuracy, logistic regression and decision tree analysis showed 73.6% and 72.6% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. It is thought that both analysis methods can be used as useful data for constructing a predictive model for hypertension.

ARIMA 모델을 이용한 항공운임예측에 관한 연구 (A Study of Air Freight Forecasting Using the ARIMA Model)

  • 서상석;박종우;송광석;조승균
    • 유통과학연구
    • /
    • 제12권2호
    • /
    • pp.59-71
    • /
    • 2014
  • Purpose - In recent years, many firms have attempted various approaches to cope with the continual increase of aviation transportation. The previous research into freight charge forecasting models has focused on regression analyses using a few influence factors to calculate the future price. However, these approaches have limitations that make them difficult to apply into practice: They cannot respond promptly to small price changes and their predictive power is relatively low. Therefore, the current study proposes a freight charge-forecasting model using time series data instead a regression approach. The main purposes of this study can thus be summarized as follows. First, a proper model for freight charge using the autoregressive integrated moving average (ARIMA) model, which is mainly used for time series forecast, is presented. Second, a modified ARIMA model for freight charge prediction and the standard process of determining freight charge based on the model is presented. Third, a straightforward freight charge prediction model for practitioners to apply and utilize is presented. Research design, data, and methodology - To develop a new freight charge model, this study proposes the ARIMAC(p,q) model, which applies time difference constantly to address the correlation coefficient (autocorrelation function and partial autocorrelation function) problem as it appears in the ARIMA(p,q) model and materialize an error-adjusted ARIMAC(p,q). Cargo Account Settlement Systems (CASS) data from the International Air Transport Association (IATA) are used to predict the air freight charge. In the modeling, freight charge data for 72 months (from January 2006 to December 2011) are used for the training set, and a prediction interval of 23 months (from January 2012 to November 2013) is used for the validation set. The freight charge from November 2012 to November 2013 is predicted for three routes - Los Angeles, Miami, and Vienna - and the accuracy of the prediction interval is analyzed using mean absolute percentage error (MAPE). Results - The result of the proposed model shows better accuracy of prediction because the MAPE of the error-adjusted ARIMAC model is 10% and the MAPE of ARIMAC is 11.2% for the L.A. route. For the Miami route, the proposed model also shows slightly better accuracy in that the MAPE of the error-adjusted ARIMAC model is 3.5%, while that of ARIMAC is 3.7%. However, for the Vienna route, the accuracy of ARIMAC is better because the MAPE of ARIMAC is 14.5% and the MAPE of the error-adjusted ARIMAC model is 15.7%. Conclusions - The accuracy of the error-adjusted ARIMAC model appears better when a route's freight charge variance is large, and the accuracy of ARIMA is better when the freight charge variance is small or has a trend of ascent or descent. From the results, it can be concluded that the ARIMAC model, which uses moving averages, has less predictive power for small price changes, while the error-adjusted ARIMAC model, which uses error correction, has the advantage of being able to respond to price changes quickly.