• Title/Summary/Keyword: Prediction time

Search Result 5,939, Processing Time 0.035 seconds

Brain-Operated Typewriter using the Language Prediction Model

  • Lee, Sae-Byeok;Lim, Heui-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1770-1782
    • /
    • 2011
  • A brain-computer interface (BCI) is a communication system that translates brain activity into commands for computers or other devices. In other words, BCIs create a new communication channel between the brain and an output device by bypassing conventional motor output pathways consisting of nerves and muscles. This is particularly useful for facilitating communication for people suffering from paralysis. Due to the low bit rate, it takes much more time to translate brain activity into commands. Especially it takes much time to input characters by using BCI-based typewriters. In this paper, we propose a brain-operated typewriter which is accelerated by a language prediction model. The proposed system uses three kinds of strategies to improve the entry speed: word completion, next-syllable prediction, and next word prediction. We found that the entry speed of BCI-based typewriter improved about twice as much through our demonstration which utilized the language prediction model.

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

An Application of GP-based Prediction Model to Sunspots

  • Yano, Hiroshi;Yoshihara, Ikuo;Numata, Makoto;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.523-523
    • /
    • 2000
  • We have developed a method to build time series prediction models by Genetic Programming (GP). Our proposed CP includes two new techniques. One is the parameter optimization algorithm, and the other is the new mutation operator. In this paper, the sunspot prediction experiment by our proposed CP was performed. The sunspot prediction is good benchmark, because many researchers have predicted them with various kinds of models. We make three experiments. The first is to compare our proposed method with the conventional methods. The second is to investigate about the relation between a model-building period and prediction precision. In the first and the second experiments, the long-term data of annual sunspots are used. The third is to try the prediction using monthly sunspots. The annual sunspots are a mean of the monthly sunspots. The behaviors of the monthly sunspot cycles in tile annual sunspot data become invisible. In the long-term data of the monthly sunspots, the behavior appears and is complicated. We estimate that the monthly sunspot prediction is more difficult than the annual sunspot prediction. The usefulness of our method in time series prediction is verified by these experiments.

  • PDF

The Study of Video Transcoding and Streaming System Based on Prediction Period

  • Park, Seong-Ho;Kim, Sung-Min;Lee, Hwa-Sei
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • Video transcoding is a technique used to convert a compressed input video stream with an arbitrary format, size, and bitrate into a different attribute video stream different attributes to provide a efficient video streaming service for the customers is dispersed in the heterogeneous networks. Specifically, frames deletion occur in a transcoding scheme that exploits the adjustment of frame rate, and at this time, the loss in temporal relation among frames due to frame deletion is compensated for the prediction of motion estimation by reusing motion vectors in the would-be deleted frames. But the processing time for transcoding don't have an improvement as much as our expectation because transcoding is done only within the transcoder. So in this paper, we propose a new transcoding algorithm based on prediction period to improve transcoding-related processing time. For this, we also modify the existing encoder so as to adjust dynamically frame rate based on the prediction period and deletion period of frames. To check how the proposed algorithm works nicely, we implement a video streaming system with the new transcoder and encoder to which it is applied. The result of the performance test shows that the streaming system with proposed algorithm improve 60% above in processing time and also PSNR have a good performance while the quality of pictures is preserved.

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

A Study on the Emission Characteristics and Prediction of Volatile Organic Compounds from Floor and Furniture

  • Pang, Seung-Ki;Sohn, Jang-Yeul;Chung, Kwang-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.89-98
    • /
    • 2005
  • In this study, indoor VOCs concentration emitted from floor and furniture was measured after the installation of floor and furniture in a real residence. With the measured data, prediction method and predication equations for indoor concentration of each VOCs and BTEX were developed. The following conclusions were drawn from this study. First, according to the predicted results of concentration decrease of BTEX (benzene, toluene, ethylbenzene, m,p,o-xylene) after the installation of floor in a real residence, prediction equation can be expressed using exponential function. Second, in case of floor, more reliable prediction equation can be obtained by using cumulative value of indoor concentration than by using just hourly measured value directly. Indoor concentration of benzene can be expressed as $y=408.52(1­e^{-00031{\times}time})$ with $R^2$ of 0.94 which is significantly high value. Third, toluene showed the highest concentration in case of furniture installation indoors, and it needed the longest time for concentration decrease. However, other substances except toluene showed constant concentration throughout the measurement period. Fourth, in case of furniture installation indoors, prediction equation of toluene concentration decrease is estimated to be $y= 3616.3{\times}e^{(-0.1091{\times}time)}+513.96{\times}e^{(-0.0006{\times}time)}\;with\; R^2$ of 0.95 which is significantly high value.

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케줄링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes a service prediction-based job scheduling model and present its scheduling algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts the next processing time of each processing component and distributes a job to a processing component with minimum processing time. This paper implements the job scheduling model on the DEVS modeling and simulation environment and evaluates its efficiency and reliability. Empirical results, which are compared to conventional scheduling policies, show the usefulness of service prediction-based job scheduling.

  • PDF

Real Time Current Prediction with Recurrent Neural Networks and Model Tree

  • Cini, S.;Deo, Makarand Chintamani
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.116-130
    • /
    • 2013
  • The prediction of ocean currents in real time over the warning times of a few hours or days is required in planning many operation-related activities in the ocean. Traditionally this is done through numerical models which are targeted toward producing spatially distributed information. This paper discusses a complementary method to do so when site-specific predictions are desired. It is based on the use of a recurrent type of neural network as well as the statistical tool of model tree. The measurements made at a site in Indian Ocean over a period of 4 years were used. The predictions were made over 72 time steps in advance. The models developed were found to be fairly accurate in terms of the selected error statistics. Among the two modeling techniques the model tree performed better showing the necessity of using distributed models for different sub-domains of data rather than a unique one over the entire input domain. Typically such predictions were associated with average errors of less than 2.0 cm/s. Although the prediction accuracy declined over longer intervals, it was still very satisfactory in terms of theselected error criteria. Similarly prediction of extreme values matched with that of the rest of predictions. Unlike past studies both east-west and north-south current components were predicted fairly well.

Review of Statistical Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction Models (from Conventional to Deep Learning Approaches)

  • Seo Young Park;Ji Eun Park;Hyungjin Kim;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1697-1707
    • /
    • 2021
  • The recent introduction of various high-dimensional modeling methods, such as radiomics and deep learning, has created a much greater diversity in modeling approaches for survival prediction (or, more generally, time-to-event prediction). The newness of the recent modeling approaches and unfamiliarity with the model outputs may confuse some researchers and practitioners about the evaluation of the performance of such models. Methodological literacy to critically appraise the performance evaluation of the models and, ideally, the ability to conduct such an evaluation would be needed for those who want to develop models or apply them in practice. This article intends to provide intuitive, conceptual, and practical explanations of the statistical methods for evaluating the performance of survival prediction models with minimal usage of mathematical descriptions. It covers from conventional to deep learning methods, and emphasis has been placed on recent modeling approaches. This review article includes straightforward explanations of C indices (Harrell's C index, etc.), time-dependent receiver operating characteristic curve analysis, calibration plot, other methods for evaluating the calibration performance, and Brier score.

An Adaptable Integrated Prediction System for Traffic Service of Telematics

  • Cho, Mi-Gyung;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.