• Title/Summary/Keyword: Prediction time

Search Result 5,939, Processing Time 0.038 seconds

A Real-Time Integrated Hierarchical Temporal Memory Network for the Real-Time Continuous Multi-Interval Prediction of Data Streams

  • Kang, Hyun-Syug
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.39-56
    • /
    • 2015
  • Continuous multi-interval prediction (CMIP) is used to continuously predict the trend of a data stream based on various intervals simultaneously. The continuous integrated hierarchical temporal memory (CIHTM) network performs well in CMIP. However, it is not suitable for CMIP in real-time mode, especially when the number of prediction intervals is increased. In this paper, we propose a real-time integrated hierarchical temporal memory (RIHTM) network by introducing a new type of node, which is called a Zeta1FirstSpecializedQueueNode (ZFSQNode), for the real-time continuous multi-interval prediction (RCMIP) of data streams. The ZFSQNode is constructed by using a specialized circular queue (sQUEUE) together with the modules of original hierarchical temporal memory (HTM) nodes. By using a simple structure and the easy operation characteristics of the sQUEUE, entire prediction operations are integrated in the ZFSQNode. In particular, we employed only one ZFSQNode in each level of the RIHTM network during the prediction stage to generate different intervals of prediction results. The RIHTM network efficiently reduces the response time. Our performance evaluation showed that the RIHTM was satisfied to continuously predict the trend of data streams with multi-intervals in the real-time mode.

User Modeling based Time-Series Analysis for Context Prediction in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경에서 컨텍스트 예측을 위한 시계열 분석 기반 사용자 모델링)

  • Choi, Young-Hwan;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.655-660
    • /
    • 2009
  • The context prediction algorithms are not suitable to provide real-time personalized service for users in context-awareness environment. The algorithms have problems like time delay in training data processing and the difficulties of implementation in real-time environment. In this paper, we propose a prediction algorithm with user modeling to shorten of processing time and to improve the prediction accuracy in the context prediction algorithm. The algorithm uses moving path of user contexts for context prediction and generates user model by time-series analysis of user's moving path. And that predicts the user context with the user model by sequence matching method. We compared our algorithms with the prediction algorithms by processing time and prediction accuracy. As the result, the prediction accuracy of our algorithm is similar to the prediction algorithms, and processing time is reduced by 40% in real time service environment.

A Study on Fuzzy Time Series Prediction Method using the Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 시계열예측 방법에 관한 연구)

  • Jee, Hyun-Min;Chang, Woo-Seok;Lee, Sung-Mok;Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.622-624
    • /
    • 2005
  • This paper proposes a time series prediction method for the nonllinear system using the fuzzy system and its genetic algorithm, At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction series system may be obtained. We obtain a good result for the time prediction of the electric load.

  • PDF

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager (도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구)

  • Oh, Eun-Mi;Kim, Hyounkyoung;Eun, Yeonju;Jeon, Daekeun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

Prediction of Hydrogen Masers' Behaviors Against UTCr with R

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.89-98
    • /
    • 2020
  • Prediction of clock behaviors is necessary to generate very high stable system time which is essential for a satellite navigation system. For the purpose, we applied the Auto-Regressive Integrated Moving Average (ARIMA) model to the prediction of two hydrogen masers' behaviors with respect to the rapid Coordinated Universal Time (UTCr). Using the packaged programming language R, we made an analysis and prediction of time series data of [UTCr - clocks]. The maximum variation width of the residuals which were obtained by the difference between the predicted and measured values, was 6.2 ns for 106 days. This variation width was just one-sixth of [UTCr-UTC (KRIS)] published by the BIPM for the same period. Since the two hydrogen masers were found to be strongly correlated, we applied the Vector Auto-Regressive Moving Average (VARMA) model for more accurate prediction. The result showed that the prediction accuarcy was improved by two times for one hydrogen maser.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Comparison of prediction methods for Nonlinear Time series data with Intervention1)

  • Lee, Sung-Duck;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.265-274
    • /
    • 2003
  • Time series data are influenced by the external events such as holiday, strike, oil shock, and political change, so the external events cause a sudden change to the time series data. We regard the observation as outlier that occurred as a result of external events. In general, it is called intervention if we know the period and the reason of external events, and it makes an analyst difficult to establish a time series model. Therefore, it is important that we analyze the styles and effects of intervention. In this paper, we considered the linear time series model with invention and compared with nonlinear time series models such as ARCH, GARCH model and also we compared with the combination prediction method that Tong(1990) introduced. In the practical case study, we compared prediction power with RMSE among linear, nonlinear time series model with intervention and combination prediction method.

  • PDF

TIME SERIES PREDICTION USING INCREMENTAL REGRESSION

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Chai, Duck-Jin;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.635-638
    • /
    • 2006
  • Regression of conventional prediction techniques in data mining uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to time series, the rate of prediction accuracy will be decreased. This paper proposes an incremental regression for time series prediction like typhoon track prediction. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of typhoon track prediction experiment are performed by the proposed technique IMLR(Incremental Multiple Linear Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

  • PDF