• Title/Summary/Keyword: Prediction risk

Search Result 1,085, Processing Time 0.026 seconds

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

Implentation of a Model for Predicting the Distance between Hazardous Objects and Workers in the Workplace using YOLO-v4 (YOLO-v4를 활용한 작업장의 위험 객체와 작업자 간 거리 예측 모델의 구현)

  • Lee, Taejun;Cho, Minwoo;Kim, Hangil;Kim, Taekcheon;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.332-334
    • /
    • 2021
  • As fatal accidents due to industrial accidents and deaths due to civil accidents were pointed out as social problems, the Act on Punishment of Serious Accidents Occurred in the Workplace was enacted to ensure the safety of citizens and to prevent serious accidents in advance. Effort is required. In this paper, we propose a distance prediction model in relation to the case where an operator is hit by heavy equipment such as a forklift. For the data, actual forklift trucks and workers roaming environments were directly captured by CCTV, and it was conducted based on the Euclidean distance. It is thought that it will be possible to learn YOLO-v4 by directly building a data-set at the industrial site, and then implement a model that predicts the distance and determines whether it is a dangerous situation, which can be used as basic data for a comprehensive risk situation judgment model.

  • PDF

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.

A Study on Auto-Classification of Aviation Safety Data using NLP Algorithm (자연어처리 알고리즘을 이용한 위험기반 항공안전데이터 자동분류 방안 연구)

  • Sung-Hoon Yang;Young Choi;So-young Jung;Joo-hyun Ahn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.528-535
    • /
    • 2022
  • Although the domestic aviation industry has made rapid progress with the development of aircraft manufacturing and transportation technologies, aviation safety accidents continue to occur. The supervisory agency classifies hazards and risks based on risk-based aviation safety data, identifies safety trends for each air transportation operator, and conducts pre-inspections to prevent event and accidents. However, the human classification of data described in natural language format results in different results depending on knowledge, experience, and propensity, and it takes a considerable amount of time to understand and classify the meaning of the content. Therefore, in this journal, the fine-tuned KoBERT model was machine-learned over 5,000 data to predict the classification value of new data, showing 79.2% accuracy. In addition, some of the same result prediction and failed data for similar events were errors caused by human.

Trends in Patents for Numerical Analysis-Based Financial Instruments Valuation Systems (수치해석 기반 금융상품 가치평가 시스템 특허 동향)

  • Moonseong Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.41-47
    • /
    • 2023
  • Financial instruments valuation continues to evolve due to various technological changes. Recently, there has been increased interest in valuation using machine learning and artificial intelligence, enabling the financial market to swiftly adapt to changes. This technological advancement caters to the demand for real-time data processing and facilitates accurate and effective valuation, considering the diverse nature of the financial market. Numerical analysis techniques serve as crucial decision-making tools among financial institutions and investors, acknowledged as essential for performance prediction and risk management in investments. This paper analyzes Korean patent trends of numerical analysis-based financial systems, considering the diverse shifts in the financial market and asset data to provide accurate predictions. This study could shed light on the advancement of financial technology and serves as a gauge for technological standards within the financial market.

A Review on Environmental Impact Assessment and Policy Utilization through the Establishment of Ecological Outlook and Evaluation System (자연생태 전망평가체계 마련을 통한 환경영향평가 및 정책 활용방안 고찰)

  • Who-Seung Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.363-376
    • /
    • 2023
  • As the risk of biodiversity reduction and extinction becomes serious due to climate change and indiscriminate development, the importance of conservation of the natural environment and ecosystem is increasing. In this situation, Ireviewed that overseas cases of the ecological outlook and evaluation system aimed at providing information on natural resources and ecosystem change. As a results, other countries showed that various research institutes have been carrying on field surveys by classification group, but it was different from us that the investigated data are collected and managed in an integrated manner and repeatedly provided within a short period of time. In addition, it was analyzed that it was highly utilized in policy and environmental impact assessment by providing evaluation-based prediction and outlook information along with basic survey data. Based on this, the limitations of information use in our wildlife surveys and environmental impacts assessments were analyzed, and the estabilishment of a ecology outlook and evaluation system and policy support measures were considered. In addition, based on the proposed outlook and evaluation system preparation plan, a policy direction that can be effectively used in domestic natural ecosystem policies was proposed.

Neurosurgical Management of Cerebrospinal Tumors in the Era of Artificial Intelligence : A Scoping Review

  • Kuchalambal Agadi;Asimina Dominari;Sameer Saleem Tebha;Asma Mohammadi;Samina Zahid
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.632-641
    • /
    • 2023
  • Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.

A Review of the Methods for the Estimation of the Explosion Parameters for Gas Explosions (가스 폭발에 따른 폭발 인자 추정을 위한 방법 고찰)

  • Minju Kim;Jeewon Lee;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.73-92
    • /
    • 2023
  • With the increase of risk of gas explosion, various methods for indirectly estimating the explosion paramaters, which are required for the prediction of gas explosion scale and impact. In this study, the characteristics of the most frequently used methods such as TNT equivalent method, TNO multi-energy method, and BST method and the processes for determining the parameters of the methods were compared. In the case of TNT equivalent method, an adequate selection of the efficiency factor for various conditions such as the type of vapor cloud explosion and explosion material is needed. There is no objective guidelines for the selection of class number in TNO multi-energy method and it is not possible to estimate negative overpressure. It was found that there were some mistakes in the reported parameter values and suggested corrected values. BST method provides more detailed guidelines for the estimation of the explosion parameters including negative overpressure, but the graphs used in this methods are not clear. In order to overcome the problem, the graphs were redrawn. A more convenient estimation of explosion parameters with the numerical expression of the redrawn graphs will be available in the future.

Changes and Perspects in the Regulation on Medical Device Approval Report Review, etc. : Focus on Traditional Korean Medical Devices (의료기기 허가·신고·심사 등에 관한 규정 변화와 전망 : 한의 의료기기 중심으로)

  • DaeJin Kim;Byunghee Choi;Taeyeung Kim;Sunghee Jung;Woosuk Kang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.31-42
    • /
    • 2024
  • Objective : In order to understand the changes in domestic approval regulations applicable to traditional Korean medical device companies, this article will explain the major amendments 「Regulation on Medical Device Approval Report Review, etc.」 from 2005 to the present on a year-by-year basis, and provide a counter plan to the recent changes in approval regulations. Methods : We analysed the changes in approval regulatory amendments related to the traditional Korean medical devices from 2005 to the present. Results : The Ministry of Food and Drug Safety is continuously improving medical device approval regulations to ensure the global competitiveness of domestic medical devices and contribute to the improvement of public health. Recent major approval regulatory amendments include the establishment of a review system for software medical devices and digital therapeutics, the recognition of real world evidence materials, the introduction of a biological evaluation of medical devices within a risk management process and a medical device approval licence renewal system. Conclusions : It is expected that the range of medical devices available to Korean medicine doctors will continue to expand in the future through the provision of non-face-to-face medical services and the development of advanced and new medical devices, as well as wearable medical devices and digital therapeutics. In order to increase the market entry potential of traditional Korean medical devices that incorporate advanced technologies such as digital technology and AI-based diagnosis and prediction technology, it is urgent that the government provide significant support to traditional Korean medical device companies to improve approval regulatory compliance.

Prediction model of health-related quality of life in older adults according to gender using a decision tree model: a study based on the Korea National Health and Nutrition Examination Survey (의사결정나무 분석을 이용한 한국 노인의 성별에 따른 건강관련 삶의 질 취약군 예측: 국민건강영양조사 자료 분석)

  • Hee Sun Kim;Seok Hee Jeong
    • Journal of Korean Biological Nursing Science
    • /
    • v.26 no.1
    • /
    • pp.26-40
    • /
    • 2024
  • Purpose: The aim of this study was to predict the subgroups vulnerable to poorer health-related quality of life (HRQoL) according to gender in older adults. Methods: Data from 5,553 Koreans aged 65 or older were extracted from the Korea National Health and Nutrition Examination Survey. HRQoL was assessed using the EQ-5D tool. Complex sample analysis and decision-tree analysis were conducted using SPSS for Windows version 27.0. Results: The mean scores of the EQ-5D index were 0.93 ± 0.00 in men and 0.88 ± 0.00 in women. In men, poorer HRQoL groups were identified with seven different pathways, which were categorized based on participants' characteristics, such as restriction of activity, perceived health status, muscle exercise, age, relative hand grip strength, suicidal ideation, the number of chronic diseases, body mass index, and income status. Restriction of activity was the most significant predictor of poorer HRQoL in elderly men. In women, the poorer HRQoL groups were identified with nine different pathways, which were categorized based on participants' characteristics, such as perceived health status, restriction of activity, age, education, unmet medical service needs, anemia, body mass index, relative hand grip, and aerobic exercise. Perceived health status was the most significant predictor of poorer HRQoL in elderly women. Conclusion: This study presents a predictive model of HRQoL in older adults according to gender and can be used to detect individuals at risk of poorer HRQoL.