• Title/Summary/Keyword: Prediction risk

Search Result 1,085, Processing Time 0.028 seconds

Multivariate Outlier Removing for the Risk Prediction of Gas Leakage based Methane Gas (메탄 가스 기반 가스 누출 위험 예측을 위한 다변량 특이치 제거)

  • Dashdondov, Khongorzul;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.23-30
    • /
    • 2020
  • In this study, the relationship between natural gas (NG) data and gas-related environmental elements was performed using machine learning algorithms to predict the level of gas leakage risk without directly measuring gas leakage data. The study was based on open data provided by the server using the IoT-based remote control Picarro gas sensor specification. The naturel gas leaks into the air, it is a big problem for air pollution, environment and the health. The proposed method is multivariate outlier removing method based Random Forest (RF) classification for predicting risk of NG leak. After, unsupervised k-means clustering, the experimental dataset has done imbalanced data. Therefore, we focusing our proposed models can predict medium and high risk so best. In this case, we compared the receiver operating characteristic (ROC) curve, accuracy, area under the ROC curve (AUC), and mean standard error (MSE) for each classification model. As a result of our experiments, the evaluation measurements include accuracy, area under the ROC curve (AUC), and MSE; 99.71%, 99.57%, and 0.0016 for MOL_RF respectively.

Development of Machine Learning Model to Predict the Ground Subsidence Risk Grade According to the Characteristics of Underground Facility (지하매설물 속성을 활용한 기계학습 기반 지반함몰 위험도 예측모델 개발)

  • Lee, Sungyeol;Kang, Jaemo;Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.5-10
    • /
    • 2022
  • Ground Subsidence has been continuously occurring in densely populated downtown. The main cause of ground subsidence is the damaged underground facility like sewer. Currently, ground subsidence is being dealt with by discovering cavities in ground using GPR. However, this consumes large amount of manpower and cost, so it is necessary to predict hazardous area for efficient operation of GPR. In this study, ◯◯city is divided into 500 m×500 m grids. Then, data set was constructed using the characteristics of the underground facility and ground subsidence in grids. Data set used to machine learning model for ground subsidence risk grade prediction. The purposed model would be used to present a ground subsidence risk map of target area.

A Study on Predicting Credit Ratings of Korean Companies using TabNet

  • Hyeokjin Choi;Gyeongho Jung;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2024
  • This study presents TabNet, a novel deep learning method, to enhance corporate credit rating accuracy amidst growing financial market uncertainties due to technological advancements. By analyzing data from major Korean stock markets, the research constructs a credit rating prediction model using TabNet. Comparing it with traditional machine learning, TabNet proves superior, achieving a Precision of 0.884 and an F1 score of 0.895. It notably reduces misclassification of high-risk companies as low-risk, emphasizing its potential as a vital tool for financial institutions in credit risk management and decision-making.

Development of Risk Society Education Program (RSEP) in Connection with Science Education (과학교육과 연계한 위험사회 교육프로그램 개발)

  • Eun-Ju Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.103-132
    • /
    • 2023
  • This study developed a risk society education program for undergraduate students to help them understand the epistemological uncertainty of risk caused by COVID-19. And it was applied to science-related classes of undergraduate students, and the purpose was to examine the degree of understanding and thoughts of undergraduate students about the risk society through science writing. As a result, it was found that the degree of understanding of the risk society was very high in all participating students regardless of their majors in science, engineering, humanities and social sciences. In addition, it was analyzed that the risk society education program helped undergraduate students to resolve the epistemological uncertainty of the risk of COVID-19 and to have an attitude to overcome the the difficult mind due to the COVID-19 distancing. The results of this study suggest that risk society education is necessary for future generations living in an era of risk of climate change and pandemic that exceeds the prediction range of science and technology in science education.

Development and Comparison of Data Mining-based Prediction Models of Building Fire Probability

  • Hong, Sung-gwan;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.101-112
    • /
    • 2018
  • A lot of manpower and budgets are being used to prevent fires, and only a small portion of the data generated during this process is used for disaster prevention activities. This study develops a prediction model of fire occurrence probability based on data mining in order to more actively use these data for disaster prevention activities. For this purpose, variables for predicting fire occurrence probability of various buildings were selected and data of construction administrative system, national fire information system, and Korea Fire Insurance Association were collected and integrated data set was constructed. After appropriate data cleansing and preprocessing, various data mining methodologies such as artificial neural network, decision trees, SVM, and Naive Bayesian were used to develop a prediction model of the fire occurrence probability of buildings. The most accurate model among the derived models is Linear SVM model which shows 68.42% as experimental data and 63.54% as verification data and it is the best model to predict fire occurrence probability of buildings. As this study develops the prediction model which uses only the set values of the specific ranges, future studies may explore more opportunites to use various setting values not shown in this study.

Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan (배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • v.30 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

A Study on the Quantitative Risk Assessment of Bridge Construction Projects (교량 공사 프로젝트의 정량적 리스크 평가에 관한 연구)

  • Ahn, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • The recent bridge construction projects is demanded more sophisticated risk management measures and loss forecasts to brace for risk losses from an increase in the trend of bridge construction. This study aims to analyze the risk factors that caused the loss of material in actual bridge construction and to develop a quantified predictive loss model, based on the past record of insurance payment by major domestic insurance companies for bridge construction projects. For the development of quantitative bridge construction loss model, the dependent variable was selected as the loss ratio, i.e., the ratio of insurance payout divided by the total project cost, while the independent variable adopted 1) Technical factors: superstructure type, foundation type, construction method, and bridge length 2) Natural hazards: typhoon and flood 3) Project information: construction period and total project cost. Among the selected independent variables, superstructure type, construction method, and project period were shown to affect the ratio of bridge construction losses. The results of this study can provide government agencies, bridge construction design and construction and insurance companies with the quantitative damage prediction and risk assessment services, using risk indicators and loss prediction functions derived from the findings of this study and can be used as a guideline for future basic bridge risk assessment development research.

Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning (기계학습 기반의 산불위험 중기예보 모델 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Kang, Yoojin;Kwon, Chungeun;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.781-791
    • /
    • 2022
  • It is crucial to provide forest fire risk forecast information to minimize forest fire-related losses. In this research, forecast models of forest fire risk at a mid-range (with lead times up to 7 days) scale were developed considering past, present and future conditions (i.e., forest fire risk, drought, and weather) through random forest machine learning over South Korea. The models were developed using weather forecast data from the Global Data Assessment and Prediction System, historical and current Fire Risk Index (FRI) information, and environmental factors (i.e., elevation, forest fire hazard index, and drought index). Three schemes were examined: scheme 1 using historical values of FRI and drought index, scheme 2 using historical values of FRI only, and scheme 3 using the temporal patterns of FRI and drought index. The models showed high accuracy (Pearson correlation coefficient >0.8, relative root mean square error <10%), regardless of the lead times, resulting in a good agreement with actual forest fire events. The use of the historical FRI itself as an input variable rather than the trend of the historical FRI produced more accurate results, regardless of the drought index used.

Targetoid Primary Liver Malignancy in Chronic Liver Disease: Prediction of Postoperative Survival Using Preoperative MRI Findings and Clinical Factors

  • So Hyun Park;Subin Heo;Bohyun Kim;Jungbok Lee;Ho Joong Choi;Pil Soo Sung;Joon-Il Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.190-203
    • /
    • 2023
  • Objective: We aimed to assess and validate the radiologic and clinical factors that were associated with recurrence and survival after curative surgery for heterogeneous targetoid primary liver malignancies in patients with chronic liver disease and to develop scoring systems for risk stratification. Materials and Methods: This multicenter retrospective study included 197 consecutive patients with chronic liver disease who had a single targetoid primary liver malignancy (142 hepatocellular carcinomas, 37 cholangiocarcinomas, 17 combined hepatocellular carcinoma-cholangiocarcinomas, and one neuroendocrine carcinoma) identified on preoperative gadoxetic acid-enhanced MRI and subsequently surgically removed between 2010 and 2017. Of these, 120 patients constituted the development cohort, and 77 patients from separate institution served as an external validation cohort. Factors associated with recurrence-free survival (RFS) and overall survival (OS) were identified using a Cox proportional hazards analysis, and risk scores were developed. The discriminatory power of the risk scores in the external validation cohort was evaluated using the Harrell C-index. The Kaplan-Meier curves were used to estimate RFS and OS for the different risk-score groups. Results: In RFS model 1, which eliminated features exclusively accessible on the hepatobiliary phase (HBP), tumor size of 2-5 cm or > 5 cm, and thin-rim arterial phase hyperenhancement (APHE) were included. In RFS model 2, tumors with a size of > 5 cm, tumor in vein (TIV), and HBP hypointense nodules without APHE were included. The OS model included a tumor size of > 5 cm, thin-rim APHE, TIV, and tumor vascular involvement other than TIV. The risk scores of the models showed good discriminatory performance in the external validation set (C-index, 0.62-0.76). The scoring system categorized the patients into three risk groups: favorable, intermediate, and poor, each with a distinct survival outcome (all log-rank p < 0.05). Conclusion: Risk scores based on rim arterial enhancement pattern, tumor size, HBP findings, and radiologic vascular invasion status may help predict postoperative RFS and OS in patients with targetoid primary liver malignancies.