• Title/Summary/Keyword: Prediction of the Shape

Search Result 856, Processing Time 0.04 seconds

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.

A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations (다양한 형상의 밀폐된 구획에서 최대 열발생률 예측을 위한 상관식 검토)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In a closed-compartment with various configurations, the correlation that can predict the maximum heat release rate (HRR) with the changes in internal volume and fire growth rate was investigated numerically. The volume of the compartment was controlled by varying the length ratio based on the bottom surface shape of the ISO 9705 fire room, where the ceiling height was fixed to 2.4 m. As a main result, the effect of a change in ceiling height on the maximum HRR was examined by a comparison with a previous study that considered the change in ceiling height. In addition, a more generalized correlation equation was proposed that could predict the maximum HRR in closed-compartments regardless of the changes in ceiling height. This correlation had an average error of 7% and a maximum error of 19% for various fire growth rates when compared with the numerical results. Finally, the applicability of the proposed correlation to representative fire compartments applied to the domestic performance-based design (PBD) was examined. These results are expected to provide useful information on predicting the maximum HRR caused by flashover in closed-compartments as well as the input information required in a fire simulation.

A Simulation of a Small Mountainous Chachment in Gyeoungbuk Using the RAMMS Model (RAMMS 모형을 이용한 경북 소규모 산지 유역의 토석류 모의)

  • Hyung-Joon Chang;Ho-Jin Lee;Seong-Goo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In Korea, mountainous areas cover 60% of the land, leading to increased factors such as concentrated heavy rainfall and typhoons, which can result in debris flow and landslide. Despite the high risk of disasters like landslides and debris flow, there has been a tendency in most regions to focus more on post-damage recovery rather than preventing damage. Therefore, in this study, precise topographic data was constructed by conducting on-site surveys and drone measurements in areas where debris flow actually occurred, to analyze the risk zones for such events. The numerical analysis program RAMMS model was utilized to perform debris flow analysis on the areas prone to debris flow, and the actual distribution of debris flow was compared and analyzed to evaluate the applicability of the model. As a result, the debris flow generation area calculated by the RAMMS model was found to be 18% larger than the actual area, and the travel distance was estimated to be 10% smaller. However, the simulated shape of debris flow generation and the path of movement calculated by the model closely resembled the actual data. In the future, we aim to conduct additional research, including model verification suitable for domestic conditions and the selection of areas for damage prediction through debris flow analysis in unmeasured watersheds.

Characteristics of Shear Strength and Consolidation Behavior of Soft Ground according to Stage Fill (단계성토에 따른 연약지반의 전단강도 및 압밀거동 특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.17-26
    • /
    • 2020
  • The soft ground in the southwest coastal area composed of marine clay is greatly influenced by sediment composition, particle size distribution, particle shape, adsorption ions and pore water characteristics, tide and temperature. In addition, the geotechnical properties are very complex due to stress history, change in pore water, dissolution process and gas formation. In this study, the physical and mechanical properties of the soft ground were evaluated through field tests and laboratory tests to investigate the strength increase characteristics according to consolidation on the soft ground in the southwest coast. In addition, in order to understand the consolidation behavior of soft ground such as subsidence, pore water pressure, horizontal displacement of soil by embankment load, measuring instruments such as pore water pressuremeter, settlement gauge, inclinometer and differential settlement gauge was installed, and a piezocon penetration test was carried out step by step to confirm the increase in shear strength of the ground. Through this, it was confirmed that the shear strength of the ground is increased according to the stages of filling. In addition, by evaluating the properties of consolidation behavior, strength increase and consolidation prediction by empirical methods and theories were compared to analyze the characteristics of strength increase rate and consolidation behavior in consideration of regional characteristics.

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

Accelerated Life Prediction on Tensile Strength of Oil Resistance HNBR (내유성 HNBR 고무의 인장강도 성능에 대한 가속수명예측)

  • Kim, Kyung Pil;Lee, Yong Seok;Yeo, Yong Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.233-238
    • /
    • 2020
  • Although the interest in NBR has been increasing due to the recent developments of the aerospace sector, there are few reports on HNBR's aeronautical oil, particularly evaluations of the accelerated life of harsh factors. In this study, the tensile strength was adopted as a performance evaluation factor to evaluate the accelerated life of HNBR used in the aviation field. The accelerated stress factor affecting the performance-aging characteristics was defined as temperature. The acceleration stress factor was determined to be temperature, and the result of measuring the tensile strength change over time. The sample for the acceleration condition was taken out of the oven for a certain period and left at room temperature for 24 hours. The dumbbell type 3 specimens were manufactured according to the standard specified in KS M 6518 and were measured the tensile strength, a factor in accelerated life evaluations. The activation energy was 0.895, and the shape parameter was 1.152 using the Arrhenius model. The characteristic life obtained from the tensile strength of the HNBR specimen immersed in aviation oil at 20℃ was 272,256 hours; the average life was 258,965 hours, and the B10 life was 38,624 hours.

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

Application Performances of the Simplified Solar Collectors and for the Drying of Red Pepper (간이(簡易) 태양열(太陽熱) 집열기(集熱器)의 유형별(類型別) 분석(分析) 및 고추건조(乾燥)에의 이용(利用))

  • Choi, Boo-Dol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.479-484
    • /
    • 1986
  • Two different types of solar collector for farm dryer- the flatplate type and the modified tubular type-were constructed and analyzed on their performances. The transparent plastic film, black painted galvanized iron sheet and black vinyl film were used for the cover and absorber of the flat-plate types. The simplified tubular type was constructed with transparent films for the cover and black vinyl films for the absorber Two elliptical iron rings were used to form a tubular shape through which air could pass. No remarkable differences were found in thermal efficiences between the absorbers made with galvanized iron sheet and black vinyl film. The average thermal efficiencies of the solar collectors were 42.8%(max.48.2%, min.38.2%) for flat plate type and 22.971 (max. 25.4%, min. 14.8%)) for tubular one. The empirical equations were proved to be applicable to the prediction of temperature elevation. The tubular solar heat collector was successfully applied to red peppers drying as a practical farm dryer. The drying rate was almost doubled compared to a conventional sun drying.

  • PDF

Characterization of Synthesized Strontianite: Effects of Ionic Strength, Temperature, and Aging Time on Crystal Morphology and Size (온도, 이온세기 및 결정성장시간에 따른 합성 스트론티아나이트(SrCO3) 특성 연구)

  • Lee, Seon Yong;Lee, Choong Hyun;Hur, Hyuck;Seo, Jieun;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.195-207
    • /
    • 2015
  • Physical properties of strontianite ($SrCO_3$) synthesized under variable conditions such as different ionic strength, temperature, and aging time were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). All synthesized samples show a single phase of strontianite. Crystallinity of the synthesized strontianite increases with increasing temperature and ionic strength with $NaNO_3$. Crystal sizes of the samples increase dramatically, and their morphology changes from rod or dendritic to prismatic shape as ionic strength and temperature of the solution increase. In addition, crystal sizes increase, and their morphology changes from rod or prismatic crystals to spheroidal aggregates with increasing aging time. These results suggest that changes in conditions of the synthesis for strontianite play an important role in controlling the crystallinity and morphology of results provide crucial information on the prediction for the physical properties of strontianite under different conditions during the formation of strontianite crystals.