• Title/Summary/Keyword: Prediction of the Shape

Search Result 854, Processing Time 0.028 seconds

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

An Evaluation for Structural Performance of Suspension Bridge by using the Natural Frequency of Hanger Member (행거의 고유진동수를 이용한 현수교의 구조적 성능 평가)

  • Wu, Sang Ik;Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.285-293
    • /
    • 2004
  • As a special infrastructure, it is important that the suspension bridges which were designed by using the cable are carefully maintained and safely inspected after their construction, more than what is done in other cases of bridge structures. However, the structural analysis for their design and maintenance has considered only the simplified geometric shape of the structure. Particularly, it is not easy to make the modeling analyze the bridge structure including detailed steel deck plates. In this paper, we evaluated the structural behaviors and performances of the completed earth-anchored suspension bridge that was in a completed state through both the tension of hanger member and their computational analysis. We considered the frame system and the detailed steel deck plates that were especially added into the modeling to take more precision analysis about it. We also applied hanger tensions converted by the natural frequency and the natural frequency of the bridge when in normal vibration. Results of the vehicle loading test were used in the analysis. We compared the results by using our modeling with the result of the loading test and the hanger tension. Our prediction on the behavior of the structure emulates the behavior of the real structure. In applying the data measured by the typhoon "Maemi" which arrived in-land last year, we confirmed our analysis model for the possibility of applying effectively into the preliminary design and maintenance plan.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

A Study on the Structural Reinforcement for the Reduction of Transverse Vibration by Ship's Main Engine (선박 주기관에 의한 횡진동 저감을 위한 구조보강 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun;Im, Hong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.279-285
    • /
    • 2019
  • Transverse vibrations of a ship's aft end and deckhouse are mainly induced by transverse exciting forces from the main engine. Resonance should be avoided in the initial design stages when there is a prediction of resonance between the main engine and transverse modes of the deckhouse. Estimates of frequencies for resonance avoidance are possible from the specifications of the main engine and propeller, but the inherent vibration frequency of the structure around the engine room is not easy to estimate due to the variation in the shape. Experience-oriented vibration design is also carried out, which results in many problems, such as process delay, over-injection of on-site personnel, and iterative performance of the design. For the flexible design of 8,600 TEU container vessels, this study addressed the resonance problem caused by the transverse vibration of the main engine when only the main engine was changed from 12 cylinders to 10 cylinders without modification of the hull structure layout. Efficient structural reinforcement design guidelines are presented for avoiding resonances with the main engine lateral vibration and the structure around the engine room. The guidelines are expected to be used as practical design guidelines at design sites.

Estimation of Sediment Transport and Long-term Prediction of Riverbed Elevation Changes in Yangon River (양곤강 퇴적물 이동 및 장기 하상변화율 측정)

  • Htet, Salaing Shine;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.450-457
    • /
    • 2019
  • Sedimentation is a common problem for river ports. But its intensity depends on the rate of sedimentation, channel shape and size, hydrodynamic behavior of the river and the importance of the port. High sedimentation rate in Yangon River has become one major issue for Myanmar as her largest port is located on the Yangon riverbank. As a result of the high sedimentation rate, shallow water area near the confluence of Yangon River, Pazundaung Creek, and Bago River keeps blocking the navigation channel to the Yangon Port, which also limits the size of vessel calling to Yangon Port. Therefore, studies to understand sediment transport process in Yangon River are required because the economic development of Myanmar highly relies on the Yangon Port. This paper aims to calculate the sediment transport and to predict the riverbed elevation changes in Yangon River by using Bagnold (1966) theory. Calculation result shows that huge difference can be found in the bed load transport between the rainy season and dry season in Yangon River, and thus the sedimentation problem would become more severe in the dry season when the transported sediments are reduced. The estimated sedimentation rate in dry season indicates that the rate of riverbed level rise near the Yangon Port area is about 0.063 m per year, which would lead to approximately 3.15 m rise in the riverbed level in next 50 yrs, considering the same workload of dredging to maintain the navigation channel.

Study on the Meaning of Four Subjects and Four Species as a Disease-Prediction Data and Diagnostic Value on Ante-Disease (질병예측자료로서 사과(四科) . 사류형상(四類形象)의 의의와 미병진단적 가치 연구)

  • Kim, Jong-Won;Jeon, Soo-Hyung;Lee, In-Seon;Kim, Kyu-Kon;Lee, Yong-Tae;Kim, Kyung-Chul;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.325-330
    • /
    • 2009
  • In Korea, medical diagnostic equipments and biochemical examination can not be used in order for diagnosing sub-healthy state or ante-disease state in oriental medicine clinic. So morphic analogical method used in oriental medicine can be a good tool as a disease-predictable signs in order to enable preventive diagnosis and therapy. Therefore the four geometrical subjects; Essence, Pneuma, Spirit, Blood(四科;精氣紳血) and the four taxonomical species; Pisces, Quadruped, Aves, Carapaces(四類;魚走鳥甲) are chosen as morphic models in this paper. The differences of two classifying methods with four subjects and four species were as follows. The diagnostic category was meta-medical and synthetic against medical specific. The diagnostic object was body in contrast with face. They were able to be applicant in psychology and classification of characteristics against diagnostics and therapeutics directly in oriental medicine. The theoretical basis was basic diagrams of four unit-fluids of body and morphological analogy with four animal species respectively. And the therapeutic aims were systemic pathogenesis following five phase theory against congestion and deficiency of Essence, Pneuma, Spirit, Blood. The four subjects and four species are mixed each other practically in clinic. But it should be used limitedly because of the above reasons described and must divide the principal and secondary factors and follow the pathology of principal shape factor. In order to improve the diagnostic value of ante-disease state, the discriminable standards, measurement methods, limit of interrelating interpretation and the criteria of abnormal disproportion were needed to be defined more clearly in advance.

A Study on the Prediction of Residual Probability of Fine Dust in Complex Urban Area (복잡한 도심에서의 유입된 미세먼지 잔류 가능성 예보 연구)

  • Park, Sung Ju;Seo, You Jin;Kim, Dong Wook;Choi, Hyun Jeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.111-128
    • /
    • 2020
  • This study presents a possibility of intensification of fine dust mass concentration due to the complex urban structure using data mining technique and clustering analysis. The data mining technique showed no significant correlation between fine dust concentration and regional-use public urban data over Seoul. However, clustering analysis based on nationwide-use public data showed that building heights (floors) have a strong correlation particularly with PM10. The modeling analyses using the single canopy model and the micro-atmospheric modeling program (ENVI-Met. 4) conducted that the controlled atmospheric convection in urban area leaded to the congested flow pattern depending on the building along the distribution and height. The complex structure of urban building controls convective activity resulted in stagnation condition and fine dust increase near the surface. Consequently, the residual effect through the changes in the thermal environment caused by the shape and structure of the urban buildings must be considered in the fine dust distribution. It is notable that the atmospheric congestion may be misidentified as an important implications for providing information about the residual probability of fine dust mass concentration in the complex urban area.

Research on ANN based on Simulated Annealing in Parameter Optimization of Micro-scaled Flow Channels Electrochemical Machining (미세 유동채널의 전기화학적 가공 파라미터 최적화를 위한 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크에 관한 연구)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.93-98
    • /
    • 2023
  • In this paper, an artificial neural network based on simulated annealing was constructed. The mapping relationship between the parameters of micro-scaled flow channels electrochemical machining and the channel shape was established by training the samples. The depth and width of micro-scaled flow channels electrochemical machining on stainless steel surface were predicted, and the flow channels experiment was carried out with pulse power supply in NaNO3 solution to verify the established network model. The results show that the depth and width of the channel predicted by the simulated annealing artificial neural network with "4-7-2" structure are very close to the experimental values, and the error is less than 5.3%. The predicted and experimental data show that the etching degree in the process of channels electrochemical machining is closely related to voltage and current density. When the voltage is less than 5V, a "small island" is formed in the channel; When the voltage is greater than 40V, the lateral etching of the channel is relatively large, and the "dam" between the channels disappears. When the voltage is 25V, the machining morphology of the channel is the best.

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.

A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations (다양한 형상의 밀폐된 구획에서 최대 열발생률 예측을 위한 상관식 검토)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In a closed-compartment with various configurations, the correlation that can predict the maximum heat release rate (HRR) with the changes in internal volume and fire growth rate was investigated numerically. The volume of the compartment was controlled by varying the length ratio based on the bottom surface shape of the ISO 9705 fire room, where the ceiling height was fixed to 2.4 m. As a main result, the effect of a change in ceiling height on the maximum HRR was examined by a comparison with a previous study that considered the change in ceiling height. In addition, a more generalized correlation equation was proposed that could predict the maximum HRR in closed-compartments regardless of the changes in ceiling height. This correlation had an average error of 7% and a maximum error of 19% for various fire growth rates when compared with the numerical results. Finally, the applicability of the proposed correlation to representative fire compartments applied to the domestic performance-based design (PBD) was examined. These results are expected to provide useful information on predicting the maximum HRR caused by flashover in closed-compartments as well as the input information required in a fire simulation.