• Title/Summary/Keyword: Prediction of pressure variation

Search Result 116, Processing Time 0.024 seconds

A Prediction Model of Blood Pressure Using Endocrine System and Autonomic Nervous System

  • Nishimura, Toshi Hiro;Saito, Masao
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.113-118
    • /
    • 1991
  • Hypertension is a medical problem with no permanent cure. Extended hypertension can cause various cardio vascular diseases, cerebral vascular diseases, and circulatory system trouble. Medical treatment at present does not consider circadian variation of blood pressure in patients ; therefore, the problem of over-reduction of blood pressure through drugs sometimes occurs. This paper presents a prediction model of circadian variation or moon blood pressure employing the endocrine grand and the autonomic nervous system.

  • PDF

A Study on the Prediction of Increased Strength due to Desiccation Shrinkage and Determination of Deposit Time for Equipments in Dredged Fills (준설매립토의 건조수축에 따른 강도증가 예측과 장비투입시기 결정에 관한 연구)

  • 김석열;김승욱;김홍택;강인규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.591-598
    • /
    • 2000
  • In the present study, the variation of settlement, pore water pressure and undrained shear strength through model tests were measured. Also, the variation of water content, unit weight and shear strength by the vane shear tests were observed. In this study, appropriate deposit time of construction equipments used in treatment of hydraulic fills is determined from the prediction curve of increased shear strength in dredged fills.

  • PDF

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area (기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구)

  • 정영진;이동인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Development of prediction model for pressure loss and cut-size of cyclone separator depend on wall curvature (사이클론 집진기의 벽면구배에 따른 압력손실과 컷-사이즈 변화 예측 모델 개발)

  • Heo, Kwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2676-2681
    • /
    • 2008
  • In previous studies, Convex cyclone are proposed to reduce pressure loss which are design cyclone wall with a single continuous curve. Studies about a prediction model for pressure loss and cut-size has focused on conventional cylinder-on-con cyclone. Therefore, the models do not perform well for uncommon design. In this study, a predict model for pressure loss and cut-size depend on cyclone wall curvature are developed. The tangential velocity below vortex-finder is obtained with consideration about friction area and momentum loss on the cyclone wall, and with this the variation of vortex-core and core velocity is obtained. Pressure loss is predicted using a Rankine vortex hypothesis. The prediction results are well agreed with experiments and CFD results.

  • PDF

Development of a Vent Analysis Method for Multiple Compartments Connected Through Multiple Ports (다중 Port로 연결된 다중 격실 Vent 해석 기법 개발)

  • Ok, Ho-Nam;Kim, In-Sun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.547-550
    • /
    • 2006
  • An analysis method is developed for the prediction of venting in multiple compartments which are connected in series or parallel through multiple ports. The existing method by the authors is modified to remove the limitation in number of ports and compartments, and the more general polytropic relation or solution of the additional energy equation replaces the previous isentropic relation allowing the prediction of pressure rise in addition to pressure drop. The accuracy of the method is verified by comparison with the results by NASA Flap code for the problem of pressure drop in a payload in the Space Shuttle cargo bay. It is expected that this method will be a useful tool in prediction of the pressure variation in a payload or payload capsule without mentioning the payload fairing itself.

  • PDF

Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling (정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측)

  • Kim, Kug-Weon;Joo, Jung-Hoon;Lee, Woo-Young;Choi, Sung-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.

Rediction of Stage Efficiency Variation of a USC High Pressure Steam Turbine by Computational Fluid Dynamics (유동해석을 이용한 고압증기터빈 단효율 변화 예측)

  • Kang, Soo Young;Jang, Hyuck Jun;Lee, Jeong Jin;Kim, Tong Seop;Park, Seong Jin;Hong, Gi Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • Prediction of performance and operating characteristics of a state-of-the-art ultra-supercritical (USC) steam turbine is an important issue in many ways. Theoretical and empirical correlation equations, developed a few decades ago, have been widely used in commercial programs for a prediction of performance. To improve of these correlation equations and apply them to the high pressure turbine of a USC steam turbine, computational fluid dynamic analysis was carried out and correlation equations to calculate efficiency variation of each stage were made. Both fluid dynamic characteristic and thermodynamic performance was analyzed for the development of the correlation equations. In particular, the impact of flow addition through an overload valve (OLV) between stages was examined throughly. The trend of pressure drop due to the flow mixing by the OLV flow addition was analyzed and an efficiency correlation equation considering the OLV flow was also made.

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF