• Title/Summary/Keyword: Prediction of porosity

Search Result 80, Processing Time 0.025 seconds

Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating (HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측)

  • Jeon, Junhyub;Seo, Namhyuk;Lee, Jong Jae;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.478-482
    • /
    • 2021
  • The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

Study for Permanent Mold Design Technology and Porosity Defect Prediction Method by Multi-Phase Flow Numerical Simulations (다상유체해석을 통한 기포결함 예측과 금형설계기술)

  • Choi Y. S.;Cho I. S.;Hwang H. Y.;Choi J. K.;Hong J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.224-232
    • /
    • 2005
  • The high-pressure die-casting is one of the most effective methods to produce a large amount of products in short cycle time. This process, however, has a problem that the gas porosity defect appears easily. The generation of gas porosity is known mainly due to the air entrapment during the injection stage. Most of numerical simulations for the molten metal flow pattern observations have done in the treating of one phase fluid flow but the gas-liquid interface is essentially multi- phase phenomenon. In this paper, the two-phase fluid flow numerical simulation methods have been adapted to predict the gas porosity generations in the molten metal. The accuracy and the usefulness of the new simulation module have been emphasized and verified through some comparison experiments.

Prediction of Microshrinkage Porosity in Thin Al-alloy Permanent Mold Castings

  • Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1991
  • The proper feeding conditions for thin Al-Alloy (AA336, JIS AC8A) castings in permanent mold were investigated to eliminate microshrinkage porosity. 5mm-thick plates (200mm long, 60mm wide) were cast with increasing padding taper from 0 to 5% under different conditions : (1) constant mold temperature of $350^{\circ}C$, (2) continuous production with uniform mold thickness (10mm), (3) continuous production with a negative taper of 2.5% in mold thickness (thickness decreasing in direction to riser). The test casting were machined off to the midplane and the shrinkage porosity was examined visually. The critical padding taper which can just eliminate the shrinkage porosity was determined for each condition, i.e. : (1) 4.5% at the constant mold temperature, (2) 3.5% for continuous production with the uniform mold thickness (3) 1.5% for continuous production with the taper in mold thickness. A computer simulation by a finite difference analysis program was applied to the test casting. The liquid fraction gradient (LFG) and the temperature gradient divided by the square root of the cooling rate (G /SR) were calculated at the end of solidification and compared with the shrinkage porosity area in the castings. For the case of constant mold temperature, LFG is a better parameter to predict shrinkage porosity than G /SR and its critical value is around 11%/cm. But for the case of continuous production, neither LFG nor G /SR could be a reliable parameter. The experimental results about the critical padding taper are of practical interest for designing permanent molds and castings. The computer simulation results stimulate further research to be directed on the prediction of centerline microshrinkage porosity in continuous production.

  • PDF

Prediction for Pore Structure of Cement Mortar Exposed to Freezing-Thawing Action by Ultrasonic Pulse Velocity Measurement (초음파 속도 측정을 통한 동결·융해 작용을 받는 시멘트 모르타르의 공극 구조 예측)

  • Pang, Gi-Sung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.421-426
    • /
    • 2017
  • In this paper, the effect of freezing-thawing action on the dynamic modulus and porosity was examined by ultrasonic pulse velocity (UPV) measurement. UPV was measured every 30 cycles during the freezing-thawing test, and dynamic modulus and porosity of cement mortar were calculated by relationship among UPV, porosity and dynamic modulus. Porosity analysis was also performed to compare with calculated porosity by mercury intrusion porosimetry (MIP). From the test, it was found that dynamic modulus of cement mortar was decreased 13% after 300 cycles. The calculated porosity was increased about 30% compared with the initial porosity before freezing-thawing action. The calculated porosity showed similar increase tendency with the porosity measured by MIP. So, it can be concluded that the porosity change of cementitious materials by freezing-thawing action can be predicted by UPV measurement.

A Model for the Relation between Strength and Porosity in Sintered Parts Produced by Powder Injection Molding Process (분말사출성형을 통해 제조된 소결체의 기공율에 따른 강도예측모델)

  • 성환진;하태권;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.375-378
    • /
    • 2003
  • In the present study, a new approach to predict the strength of sintered materials has been carried out and a new framework combining neck growth model and ideal pore model has been established based on the results of tensile tests on powder injection molded specimens with the various porosity. Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. PIM delivers structural materials in a shaping technology previously restricted to polymers. 17-4 PH stainless steel powders with average diameters of 10 $\mu\textrm{m}$ were injection-molded into flat tensile specimens sintered at the various temperatures ranging from 900 to 1350$^{\circ}C$ for 1h. The relationships between strength and porosity were applied to the experimental results and verified.

  • PDF

An Analytical Study on Prediction of Effective Elastic Constants of Perforated Plate

  • Lee Jae-Kon;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2224-2230
    • /
    • 2005
  • In this study, the validity of the Eshelby-type model for predicting the effective Young's modulus and in-plane Poisson's ratio of the 2-dimensional perforated plate has been investigated in terms of the porosity size and its arrangement. The predicted results by the Eshelby-type model are compared with those by finite element analysis. Whenever the ratio of the porosity size to the specimen size becomes smaller than 0.07, the effective elastic constants predicted by finite element analysis are convergent regardless of the arrangement of the porosities. Under these conditions, the effective Young's moduli of the perforated plate can be predicted within the accuracy of $5\%$ by the Eshelby-type model, which overestimates and underestimates the effective Poisson's ratios by $10\%\;and\;6\%$ for the plates with periodically and non-periodically arranged porosities, respectively.

Numerical Prediction of Phase Change within the Molten Steel with Thin Slab Casting (박슬라브 주형에 따른 용강내의 상변화현상에 대한 수치적 해석)

  • 최원록;유홍선;최영기
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.14-22
    • /
    • 2000
  • A numerical analysis has been performed on the two-dimensional rectangular gallium melting problem using the enthalpy method. The major advantage of this method is that the physical domain is discretized with fixed grids without transforming variables and the interface conditions of phase change are accounted for the definition of suitable source terms in the governing equations. But in the fixed method, there is some ambiguity in defining the porosity constant which has no physical interpretation. If the velocity correction is included in the momentum equation, for the appropriate range of porosity constant, the realistic predictions are obtained. The object of the present work is to predict the phase change within the molten steel with thin riser slab using the modified enthalpy-porosity method. The computational procedures for predicting velocity and temperature are based on the finite volume method and the non-staggered grid system. The influence of natural convection on the melting process is considered. A comparison with the experimental results shows that the modified method is better than the previous one.

  • PDF

Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks

  • Abdelhedi, Mohamed;Aloui, Monia;Mnif, Thameur;Abbes, Chedly
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.

A Prediction Model on Porosity of Hardened Cement Paste under High Temperatures (고온시의 경화된 시멘트 페이스트의 공극률 예측모델)

  • Lee, Jae-Sung;Jung, Sung-Jin;Jung, Young-Han;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • The thermal degradation of concrete results mainly from two mechanisms. The first one is related to phase transformations of constituents at different temperatures. The initial constituents transform to other phases due to elevated temperature. The second mechanism is related to the temperature sensitivity of the mechanical properties of the constituents in concrete. Therefore, the degradation of concrete under high temperatures must be studied from both mechanical and chemical points of view. This study was performed as a basic study to propose the material models of concrete exposed to high temperatures considering above two mechanisms. This study presents a prediction model on the porosity of hardened cement paste considering phase changes according to temperature increase.

Prediction Method for Fire Load Prediction of Bedding and Bags Using a Standard Normal Distribution (정규분포를 활용한 이불과 가방에 대한 화재 하중 예측 방안 연구)

  • Kim, Hyun-Do;Nam, Dong-Koon;Cho, Sung-Woo
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2015
  • This study suggests basic data for fire-resistant compartments to prevent fires from spreading in a traditional markets. As representative combustible goods handled in traditional markets, bedding and bags were chosen. The fire loads could be calculated using the porosity of the materials based on a standard normal distribution. The bedding and bag porosity were 98.7%, and 94.39%, respectively. The the fire load of bedding is $29.9kg/m^2$, and that of bags is $65.61kg/m^2$.