• Title/Summary/Keyword: Prediction of landslide hazard areas

Search Result 15, Processing Time 0.024 seconds

The Prediction of Landslide Hazard Areas Considering of Root Cohesion and Crown Density (뿌리점착력과 수관밀도를 적용한 토사재해 위험지역 예측)

  • Choi, Won-Il;Choi, Eun-Hwa;Suh, Jin-Won;Jeon, Seong-Kon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • Since the landslide hazard areas prediction was analyzed by slope-angle and soil properties, regional characteristics is not taken. Therefore, in order to make more rational prediction, it is necessary to consider the characteristics of the region. Tree roots have been known to increase soil cohesion in landslide hazard areas and to vary the degrees depending on the tree type. In addition, a reasonable prediction of landslide hazard areas can be made by considering crown density based on crown distribution patterns of the area of interest. In this study, using the roots cohesion considering the crown density of the trees, which is in the landslides risk areas around Mt. Gwehwa in Sejong City, the landslides risk areas were predicted and compared with predicted results obtained by not considering root cohesion.

Verification of Landslide Hazard using RS and GIS Methods (RS와 GIS 기법을 활용한 산사태 위험성의 검증)

  • Cho, Nam-Chun;Choi, Chul-Uong;Jeon, Seong-Woo;Han, Kyung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.54-66
    • /
    • 2006
  • Korea Forest Service made the landslide hazard map for all mountainous districts over the country in May 2005. In this study, we selected landslide areas occurred in Jeonbuk from 02 August 2005 to 03 August 2005 as the study area. We extracted landslide areas using images taken by PKNU 3 System, which was developed by PE&RS Laboratory in Dept. of Satellite Information Sciences, Pukyong National University and verified the accuracy of landslide hazard map by overlaying landslide hazard areas extracted by PKNU 3 images. And we analyzed characteristics of an altitude, a gradient, an inclined direction, a flow length, a flow accumulation for landslide areas using mountainous terrain analysis and Stream Network analysis of ArvView 3.3. As a result of this study, it is necessary to adjust the unitage(%) by the class and to modify and improve the score table for prediction of landslide-susceptible area forming the foundation of making the landslide hazard maps.

  • PDF

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Comparison of Prediction Models for Identification of Areas at Risk of Landslides due to Earthquake and Rainfall (지진 및 강우로 인한 산사태 발생 위험지 예측 모델 비교)

  • Jeon, Seongkon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.15-22
    • /
    • 2019
  • In this study, the hazard areas are identified by using the Newmark displacement model, which is a predictive model for identifying the areas at risk of landslide triggered by earthquakes, based on the results of field survey and laboratory test, and literature data. The Newmark displacement model mainly utilizes earthquake and slope related data, and the safety of slope stability derived from LSMAP, which is a landslide prediction program. Backyang Mt. in Busan where the landslide has already occurred, was chosen as the study area of this research. As a result of this study, the area of landslide prone zone identified by using the Newmark displacement model without earthquake factor is about 1.15 times larger than that identified by using LSMAP.

PREDICTION MODELS FOR SPATIAL DATA ANALYSIS: Application to landslide hazard mapping and mineral exploration

  • Chung, Chang-Jo
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.9-9
    • /
    • 2000
  • For the planning of future land use for economic activities, an essential component is the identification of the vulnerable areas for natural hazard and environmental impacts from the activities. Also, exploration for mineral and energy resources is carried out by a step by step approach. At each step, a selection of the target area for the next exploration strategy is made based on all the data harnessed from the previous steps. The uncertainty of the selected target area containing undiscovered resources is a critical factor for estimating the exploration risk. We have developed not only spatial prediction models based on adapted artificial intelligence techniques to predict target and vulnerable areas but also validation techniques to estimate the uncertainties associated with the predictions. The prediction models will assist the scientists and decision-makers to make two critical decisions: (i) of the selections of the target or vulnerable areas, and (ii) of estimating the risks associated with the selections.

  • PDF

Comparison of Analysis Model on Soil Disaster According to Soil Characteristics (지반특성에 따른 토사재해 해석 모델 비교)

  • Choi, Wonil;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study analyzed the ground characteristics region by designating 3 research areas, Anrim-dong in Chungju City, Busa-dong in Daejeon Metropolitan City and Sinan-dong in Andong City out of the areas subject to concentrated management to prepare for sediment disaster in downtown areas. The correlation between ground characteristics were observed by using characteristics (crown density, root cohesion, rainfall characteristics, soil characteristics) and the risk areas were predicted through sediment disaster prediction modeling. Landslide MAPping (LSMAP), Stability Index MAPping (SINMAP) and Landslide Hazard MAP (LHMAP) were used for the comparative analysis of the hazard prediction model for sediment disaster. As a result of predicting the sediment disaster danger, in case of SINMAP which was generally used, excessive range was predicted as a hazardous area and in case of the Korea Forest Service's landslide hazard map (LHMAP), the smallest prediction area was assessed. LSMAP predicted a medium range of SINMAP and LHMAP as hazardous area. The difference of the prediction results is that the analysis parameters of LSMAP is more diverse and engineering than two comparative models, and it is found that more precise prediction is possible.

Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based (GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.

Studies on Development of Prediction Model of Landslide Hazard and Its Utilization (산지사면(山地斜面)의 붕괴위험도(崩壞危險度) 예측(豫測)모델의 개발(開發) 및 실용화(實用化) 방안(方案))

  • Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.175-190
    • /
    • 1994
  • In order to get fundamental information for prediction of landslide hazard, both forest and site factors affecting slope stability were investigated in many areas of active landslides. Twelve descriptors were identified and quantified to develop the prediction model by multivariate statistical analysis. The main results obtained could be summarized as follows : The main factors influencing a large scale of landslide were shown in order of precipitation, age group of forest trees, altitude, soil texture, slope gradient, position of slope, vegetation, stream order, vertical slope, bed rock, soil depth and aspect. According to partial correlation coefficient, it was shown in order of age group of forest trees, precipitation, soil texture, bed rock, slope gradient, position of slope, altitude, vertical slope, stream order, vegetation, soil depth and aspect. The main factors influencing a landslide occurrence were shown in order of age group of forest trees, altitude, soil texture, slope gradient, precipitation, vertical slope, stream order, bed rock and soil depth. Two prediction models were developed by magnitude and frequency of landslide. Particularly, a prediction method by magnitude of landslide was changed the score for the convenience of use. If the total store of the various factors mark over 9.1636, it is evaluated as a very dangerous area. The mean score of landslide and non-landslide group was 0.1977 and -0.1977, and variance was 0.1100 and 0.1250, respectively. The boundary value between the two groups related to slope stability was -0.02, and its predicted rate of discrimination was 73%. In the score range of the degree of landslide hazard based on the boundary value of discrimination, class A was 0.3132 over, class B was 0.3132 to -0.1050, class C was -0.1050 to -0.4196, class D was -0.4195 below. The rank of landslide hazard could be divided into classes A, B, C and D by the boundary value. In the number of slope, class A was 68, class B was 115, class C was 65, and class D was 52. The rate of landslide occurrence in class A and class B was shown at the hige prediction of 83%. Therefore, dangerous areas selected by the prediction method of landslide could be mapped for land-use planning and criterion of disaster district. And also, it could be applied to an administration index for disaster prevention.

  • PDF

Analysis and Verification of Slope Disaster Hazard Using Infinite Slope Model and GIS (무한사면해석기법과 GIS를 이용한 사면 재해 위험성 분석 및 검증)

  • 박혁진;이사로;김정우
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.313-320
    • /
    • 2003
  • Slope disaster is one of the repeated occurring geological disasters in rainy season resulting in about 23 human losses in Korea every year. The slope disaster, however, mainly depends on the spatial and climate properties. such as geology, geomorphology, and heavy rainfall, and, hence, the prediction or hazard analysis of the slope disaster is a difficult task. Therefore, GIS and various statistical methods are implemented for slope disaster analysis. In particular, GIS technique is widely used for the analysis because it effectively handles large amount of spatial data. The GIS technique. however, only considers the statistics between slope disaster occurrence and related factors, not the mechanism. Accordingly. an infinite slope model that mechanically considers the balance of forces applied to the slope is suggested here with GIS for slope disaster analysis. According to the research results, the infinite slope model has a possibility that can be utilized for landslide prediction and hazard evaluation since 87.5% of landslide occurrence areas have been predicted by this technique.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.