• 제목/요약/키워드: Prediction of deformation

검색결과 801건 처리시간 0.028초

결정소성 유한요소법을 이용한 FCC 다결정 금속의 압연 집합조직 예측 (Prediction of Rolling Texture Evaolution in FCC Polycrystalline Metals Using Finite Element Method of Crystal Plasticity)

  • 박성준;조재형;한흥남;오규환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.313-319
    • /
    • 1999
  • The development of deformation texture in FCC polycystalline metals during rolling was simulated by the finite element analysis using a large-deformation, elaatic-plastic, rate-dependent polycrystalline model of crystal plasticity. Different plastic anisotropy due to different orientation of each crystal makes inhomogeneous deformation. Assuming plane strain compression condition, the simulation with a high rate sensitivity resulted in main component change from Dillamore at low rate sensitivity to Brass component.

  • PDF

Simplified welding distortion analysis for fillet welding using composite shell elements

  • Kim, Mingyu;Kang, Minseok;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.452-465
    • /
    • 2015
  • This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

대변형 이론을 이용한 액상화 해석에 관한 연구 (A study on the liquefaction analysis using the large deformation theory)

  • 문용;이강일;김태훈;임은상;이용희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1348-1357
    • /
    • 2006
  • For the rational aseismatic design of a structure constructed on the ground which has weakness for liquefaction or flow, it is necessary to predict ground deformation as well as force acting on the ground. In general, the prediction of liquefaction is based on solid mechanics while the prediction of flow is basis of fluid mechanics. Since liquefaction and flow occur continuously, unified analysis methods have been developed. Among of them is Rue-elasto plastic model that is based on small deformation theory. This methods, however, is not adequate for such a large deformable ground condition. In this paper, a large deformaion theory using the finite deformation theory proposed by Dietal and the updated lagrangian method is presented. In addition, the applicability of the theory is verified by 1-d consolidation analysis and flow tests.

  • PDF

고유 변형도법과 리메슁 기술을 접목한 블록의 역세팅 형상 예측기술 (Prediction Technology of Reverse Setting Block Shape with Inherent Strain Method and Re-meshing Technology)

  • 현충민;최한석;박창우;김성훈
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.425-430
    • /
    • 2017
  • In order to reduce the cost of corrections and time needed for the block assembly process, the reverse setting method is applied for a back-heated block to neutralize deck deformation. The proper reverse setting shape for a back-heated block to correct deformation improved the deck flatness, but an excessive amount of reverse setting could inversely affect the flatness of the block. A prediction method was developed for the proper reverse setting shape using a back-heated block, considering the complex geometry of blocks, thickness of the deck plate, and thermal loading conditions such as welding and back-heating. The prediction method was developed by combining the re-meshing technique and inherent strain-based deformation analysis using the finite element method. Because the flatness deviation was decreased until the lower critical point and thereafter it tended to increase again, the optimum value for which the flatness was the best case was selected by repeatedly calculating the predefined reverse setting values. Based on this analysis and the study of the back-heating deformation of large assembly blocks, including the reverse setting shape, the mechanism for selecting the optimum reverse setting value was identified. The developed method was applied to the actual blocks of a ship, and it was confirmed that the flatness of the block was improved. It is concluded that the developed prediction method can be used to predict the optimum reverse setting shape value of a ship's block, which will reduce the cost of corrections in the construction stage.

완경사 방정식을 이용한 항내의 파고예측 (A Prediction Method of Wave Deformation in Harbors Using the Mild Slope Equation)

  • 최선호;박상길
    • 물과 미래
    • /
    • 제26권2호
    • /
    • pp.39-48
    • /
    • 1993
  • 해안에서 발생하는 재해의 큰 원인은 파랑작용에 기인되기 때문에 해양 기술자는 정확한 파랑변형을 예측하는 것이 매우 중요하다. 파랑변형의 주요인은 간수효과, 반사, 회석, 굴석, 산란, 방사등을 들 수 있다. 최근, 파랑변형에 대하여 수치모델이 이용되고 있다. 본 연구는 굴석과 회석을 동시에 고려할 수 있는 완경사방정식을 이용하여 유한요소법으로 수치모델을 수립했다. 이 방법은 복잡한 경계조건을 갖는 해안에 정확한 파랑예측을 할 수 있는 장점이 있지만 몇 가지의 개선해야할 문제점도 있는 것으로 나타났다. 본 계산결과를 검정하기 위해 모형실험을 실시했다. 완경사 방정식을 유한요소법으로 계산한 계산값과 Lee의 방법(Helmholtz 방정식을 유한차분법으로 수치계산한 방법)으로 계산한 값, 그리고 실험값과 비교한 결과 타당성있는 일치를 얻었다.

  • PDF

ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측 (Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA)

  • 이수환;홍현지;박지수;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

박판구조물의 용접 면외변형에 대한 이론 해석적 접근 (Theoretical Approach to Welding Out-of Plane Oeformations in Thin Plate Structures)

  • 서승일
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.466-471
    • /
    • 2005
  • The out-of-plane deformation in thin plate structure has been a serious qualify problem. It has been known that the out-of-plane deformation is caused by the angular deformation of welded joint. However, experimental results show that the conventional theory based on angular deformation is not appropriate for prediction of the out-of-plane deformation in thin plate structure. In this study, large deformation plate theory is introduced to clarify the effect of residual stress on the out-of-plane deformation. A simple equation is proposed to predict the out-of-plane deformation. The results by the proposed method show good agreement with the experimental results.

회귀분석에 의한 모터싸이클 브레이크 디스크의 열변형량에 관한 연구 (A Study on Thermal Deformation Volume of Motorcycle Brake Disk using Regression Analysis)

  • 류미라;변상민;박흥식
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.102-107
    • /
    • 2009
  • The thermal deformation volume of motorcycle break disk was studied using a disk-on-pad type friction tester. Thermal deformation volume of motorcycle break disk have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal deformation volume. In this study, the thermal deformation volume with ANSYS workbench are obtained by application of temperature from mechanical test. From this study, the result was shown that the motorcycle break disk with ventilated hole 3 have the most excellent thermal deformation characteristics. The regression equation with frictional factors which have a trust rate of 95% for prediction of thermal deformation volume of motorcycle break disk was composed.

비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I) (Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I))

  • 김영석;최홍석;임성언
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF