• Title/Summary/Keyword: Prediction of Traffic Congestion

Search Result 79, Processing Time 0.028 seconds

A Prediction Model on Freeway Accident Duration using AFT Survival Analysis (AFT 생존분석 기법을 이용한 고속도로 교통사고 지속시간 예측모형)

  • Jeong, Yeon-Sik;Song, Sang-Gyu;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.135-148
    • /
    • 2007
  • Understanding the relation between characteristics of an accident and its duration is crucial for the efficient response of accidents and the reduction of total delay caused by accidents. Thus the objective of this study is to model accident duration using an AFT metric model. Although the log-logistic and log-normal AFT models were selected based on the previous studies and statistical theory, the log-logistic model was better fitted. Since the AFT model is commonly used for the purpose of prediction, the estimated model can be also used for the prediction of duration on freeways as soon as the base accident information is reported. Therefore, the predicted information will be directly useful to make some decisions regarding the resources needed to clear accident and dispatch crews as well as will lead to less traffic congestion and much saving the injured.

Time Series Analysis for Traffic Flow Using Dynamic Linear Model (동적 선형 모델을 이용한 교통 흐름 시계열 분석)

  • Kim, Hong Geun;Park, Chul Young;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.179-188
    • /
    • 2017
  • It is very challenging to analyze the traffic flow in the city because there are lots of traffic accidents, intersections, and pedestrians etc. Now, even in mid-size cities Bus Information Systems(BIS) have been deployed, which have offered the forecast of arriving times at the stations to passengers. BIS also provides more informations such as the current locations, departure-arrival times of buses. In this paper, we perform the time-series analysis of the traffic flow using the data of the average trvel time and the average speed between stations extracted from the BIS. In the mid size cities, the data from BIS will have a important role on prediction and analysis of the traffic flow. We used the Dynamic Linear Model(DLM) for how to make the time series forecasting model to analyze and predict the average speeds at the given locations, which seem to show the representative of traffics in the city. Especially, we analysis travel times for weekdays and weekends separately. We think this study can help forecast the traffic jams, congestion areas and more accurate arrival times of buses.

Novel online routing algorithms for smart people-parcel taxi sharing services

  • Van, Son Nguyen;Hong, Nhan Vu Thi;Quang, Dung Pham;Xuan, Hoai Nguyen;Babaki, Behrouz;Dries, Anton
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.220-231
    • /
    • 2022
  • Building smart transportation services in urban cities has become a worldwide problem owing to the rapidly increasing global population and the development of Internet-of-Things applications. Traffic congestion and environmental concerns can be alleviated by sharing mobility, which reduces the number of vehicles on the road network. The taxi-parcel sharing problem has been considered as an efficient planning model for people and goods flows. In this paper, we enhance the functionality of a current people-parcel taxi sharing model. The adapted model analyzes the historical request data and predicts the current service demands. We then propose two novel online routing algorithms that construct optimal routes in real-time. The objectives are to maximize (as far as possible) both the parcel delivery requests and ride requests while minimizing the idle time and travel distance of the taxis. The proposed online routing algorithms are evaluated on instances adapted from real Cabspotting datasets. After implementing our routing algorithms, the total idle travel distance per day was 9.64% to 12.76% lower than that of the existing taxi-parcel sharing method. Our online routing algorithms can be incorporated into an efficient smart shared taxi system.

A Queue Length Prediction Algorithm using Kalman Filter (Kalman Filter를 활용한 대기행렬예측 알고리즘 개발)

  • 심소정;이청원;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.145-152
    • /
    • 2002
  • Real-time queueing information and/or predictive queue built-up information can be a good criterion in selecting travel options, such as routes, both for users, and for operators in operating transportation system. Provided properly, it will be a key information for reducing traffic congestion. Also, it helps drivers be able to select optimal roues and operators be able to manage the system effectively as a whole. To produce the predictive queue information, this paper proposes a predictive model for estimating and predicting queue lengths, mainly based on Kalman Filter. It has a structure of having state space model for predicting queue length which is set as observational variable. It has been applied for the Namsan first tunnel and the application results indicate that the model is quite reasonable in its efficacy and can be applicable for various ATIS system architecture. Some limitations and future research agenda have also been discussed.

An Exploratory Research on the Relationship between Commuters' Residential and Traffic Characteristics and the Intention to Move : A Case Study on Residents in Suwon (통근자의 가구 및 교통 특성과 이사의향에 관한 탐색적 연구 : 수원시민을 대상으로)

  • Son, Woong Bee;Jang, Jae Min
    • Korea Real Estate Review
    • /
    • v.28 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • Securing a stable residential location is one of the most important decisions that must be made in the modern society. On this matter, both individuals and their families must decide on where to live after taking into consideration various analyses. Contributing attributes in the selection of our dwelling place are crucial. In this research, influencing variables were derived from the intention to move by focusing on the characteristics of the household and traffic conditions, while implications were suggested through a comparison of urban characteristics. Suwon was selected as the case study. The result of the analysis showed the city of Suwon has longer communal satisfaction, relies on self-sufficiency, and is conscious of parking regulation. Preferences for rental housing, having infants and elementary school kids, high savings, and commuter convenience in Suwon and Gyeonggi-do ranked higher in the hierarchy of the intention to move. Compared to Gyeonggi-do, Suwon was influenced by commuters in the city and parking regulation-related variables. Meanwhile, Gyeonggi-do was affected by the lack of public transportation facilities and traffic congestion. Suwon, on the other hand, has a high share of passenger car ownership, so it seems that the psychological stability of parking space is significant. This research will contribute in the policy-making of Suwon, especially on the subject of migration prediction of citizens and real estate location selection, through analyses of variables related to the intention to move to a new residence.

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

A Study on an ETCS Demand Forecasting Model of Toll Roads in Changwon City (유료도로 ETCS 이용수요 예측모형에 관한 연구 (창원시를 중심으로))

  • Kim, Kyung-Whan;Ha, Man-Bok;Jeon, Yeon-Hoo;Lee, Ik-Su
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.17-27
    • /
    • 2007
  • Since early 1990s, several developed countries have applied the Electronic Toll Collection System (ETCS) to toll roads in order to solve traffic congestion and delay problems at toll plazas. For the successful operation of the ETCS, it is important to correctly forecast the ETCS using rate. In this study, it was conceived to develop a sophisticated demand forecasting model of the ETCS for toll roads in Changwon City The Binary Logit and neural network models were tested for the model considering 11 explaining variables. The best results in prediction accuracy and goodness-of-fit were obtained on the neural network model. However, because of the difficulty in predicting the 11 variables and its fitness in wide range, the Binary Logit model which considers three policy variables only is recommended as the model to forecast the ETCS using rate.

  • PDF

A Prediction and Analysis for Functional Change of Ecosystem in South Korea (생태계 용역가치를 이용한 대한민국 생태계의 기능적 변화 예측 및 분석)

  • Kim, Jin-Soo;Park, So-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.114-128
    • /
    • 2013
  • Rapid industrialization and economic growth have led to serious problems including reduced open space, environmental degradation, traffic congestion, and urban sprawl. These problems have been exacerbated by the absence of effective conservation and governance, and have resulted in various social conflicts. In response to these challenges, many scholar and government hope to achieve sustainable development through the establishment and management of environment-friendly planning. For this purpose, we would like to analyze functional change for ecosystem by future land-use/cover changes in South Korea. Toward this goal, we predicted land-use/cover changes from 2010 to 2060 using the future population of Statistics Korea and urban growth probability map created by logistic regression analysis and analyzed ecosystem service value using costanza's coefficient. In the case of scenario 1, ecosystem service value represented 6,783~7,092 million USD. In the case of scenario 2, ecosystem represented 6,775~7,089 million USD, 2.9~7.6 million USD decreased compared by scenario 1. This was the result of area reduction for farmland and wetland which have high environmental value relatively according to urban growth by development point of view. The results of this analysis indicate that environmentally sustainable systems and urban development must be applied to achieve sustainable development and environmental protection. Quantitative analysis of environmental values in accordance with environmental policy can help inform the decisions of policy makers and urban developers. Furthermore, forecasting urban growth based on future demand will provide more precise predictive analysis.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.