• Title/Summary/Keyword: Prediction of Traffic Congestion

Search Result 79, Processing Time 0.025 seconds

Functional regression approach to traffic analysis (함수회귀분석을 통한 교통량 예측)

  • Lee, Injoo;Lee, Young K.
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.773-794
    • /
    • 2021
  • Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes.

Loss-RTT based Differentiated Rate Adaptation Algorithm (Loss-RTT 기반 차등 전송률 조절 알고리즘에 관한 연구)

  • 김지언;정재일
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • TCP is ill-suited to real-time multimedia applications. Its bursty transmission, and abrupt and frequent wide rate fluctuations cause high delay jitters and sudden quality degradation of multimedia applications. Deploying non congestion controlled traffic results in extreme unfairness towards competing TCP traffic. Therefore, they need to be enhanced with congestion control schemes that not only am at reducing loss ratios and improve bandwidth utilization but also are fair towards competing TCP connections. This paper proposes a differentiated rate adaptation algorithm based on loss and round trip time. Rate in a sender quickly responds to loss ratio and holds steady state. Additionally, this algorithm reduces loss ratio by loss prediction in a receiver.

  • PDF

Highway traffic noise modeling and estimation based on vehicles volume and speed

  • Rassafi, Amir Abbas;Ghassempour, Jafar
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.211-218
    • /
    • 2015
  • Traffic noise estimation models are useful in evaluation of the noise pollution in current circumstances. They are helpful tools for design and planning new roads and highways. Measurement of average traffic noise level is possible when traffic speed and volume are known. The objective of this study was to devise a model for prediction of highway traffic noise levels based on current traffic variables in Iran. The design of this model was to take the impact of traffic congestion into consideration and to be field tested. This study is a library research augmented by field study conducted on Saeedi Highway located south west of Tehran. The period for the field study lasted 5 days from 7-12 February, 2013. This study examined liner and non-liner methods in formulation of its model. Liner method without a fixed coefficient was the best fit for the intended model. The proposed model can serve as a decision making tool to estimate the impact of key influential factors on sound pressure levels in urban areas in Iran.

Construction of Delay Predictive Models on Freeway Ramp Junctions (고속도로 진출입램프 접속부상의 지체예측모형 구축에 관한 연구)

  • 김정훈;김태곤
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.175-185
    • /
    • 2000
  • Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the purpose of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the rap junctions of freeway with 70mph speed limit. From the traffic analyses, and model construction and verification for delay prediction on the ramp junctions of freeway, the following results were obtained : ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junctions of freeway. ⅲ) The delay-occupancy curve showed a remarkable shift based on the occupancies observed : O$\_$d/〈9% and O$\_$d/$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under O$\_$d/$\geq$9%, but lowly for delay prediction on the ramp junctions of freeway under O$\_$d/〈9%. Rather, the driver characteristics or transportation conditions around the freeway were thought to be a little higher explanatory for the delay prediction under O$\_$d/〈9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.

  • PDF

Comparative Study of PSO-ANN in Estimating Traffic Accident Severity

  • Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.95-100
    • /
    • 2023
  • Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.

Study on a Neural UPC by a Multiplexer Information in ATM (ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구)

  • Kim, Young-Chul;Pyun, Jae-Young;Seo, Hyun-Seung
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.36-45
    • /
    • 1999
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. In this paper, Buffered Leaky Bucket which applies the same control scheme to a variety of traffics requiring the different QoS(Quality of Service) and Neural Networks lead to the effective buffer utilization and QoS enhancement in aspects of cell loss rate and mean transfer delay. And the cell scheduling algorithms such as DWRR and DWEDF for multiplexing the incoming traffics are enhanced to get the better fair delay. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate and buffer threshold are changed by the predicted values. The prediction of traffic loss rate by neural networks can enhance efficiency in controlling the cell loss rate and cell transfer delay of next incoming cells and also be applied for other traffic controlling schemes. Computer simulation results performed for random cell generation and traffic prediction show that QoSs of the various kinds of traffcis are increased.

  • PDF

A Study on the traffic flow prediction through Catboost algorithm (Catboost 알고리즘을 통한 교통흐름 예측에 관한 연구)

  • Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.58-64
    • /
    • 2021
  • As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.

Development of Vehicle Arrival Time Prediction Algorithm Based on a Demand Volume (교통수요 기반의 도착예정시간 산출 알고리즘 개발)

  • Kim, Ji-Hong;Lee, Gyeong-Sun;Kim, Yeong-Ho;Lee, Seong-Mo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • The information on travel time in providing the information of traffic to drivers is one of the most important data to control a traffic congestion efficiently. Especially, this information is the major element of route choice of drivers, and based on the premise that it has the high degree of confidence in real situation. This study developed a vehicle arrival time prediction algorithm called as "VAT-DV" for 6 corridors in total 6.1Km of "Nam-san area trffic information system" in order to give an information of congestion to drivers using VMS, ARS, and WEB. The spatial scope of this study is 2.5km~3km sections of each corridor, but there are various situations of traffic flow in a short period because they have signalized intersections in a departure point and an arrival point of each corridor, so they have almost characteristics of interrupted and uninterrupted traffic flow. The algorithm uses the information on a demand volume and a queue length. The demand volume is estimated from density of each points based on the Greenburg model, and the queue length is from the density and speed of each point. In order to settle the variation of the unit time, the result of this algorithm is strategically regulated by importing the AVI(Automatic Vehicle Identification), one of the number plate matching methods. In this study, the AVI travel time information is composed by Hybrid Model in order to use it as the basic parameter to make one travel time in a day using ILD to classify the characteristics of the traffic flow along the queue length. According to the result of this study, in congestion situation, this algorithm has about more than 84% degree of accuracy. Specially, the result of providing the information of "Nam-san area traffic information system" shows that 72.6% of drivers are available.

A Study on Assessment of Vessel Traffic Safety Management by Marine Traffic Flow Simulation (해상교통류 시뮬레이션에 의한 해상교통안전관리평가에 관한 연구)

  • Park Young- Soo;Jong Jae-Yong;Inoue Kinzo
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.43-55
    • /
    • 2002
  • Vessel traffic safety management means the managerial technical measures for improving the marine traffic safety in general terms. The main flow of vessel traffic safety management is that: 1) Traffic Survey, 2) Replay by Marine Traffic Flow Simulation, 3) Quantitative Assessment, 4) Policy Alternatives, 5) Prediction·Verification. In the management of vessel traffic safety, it is most important to establish assessment models that can numerically estimate the current safety level and quantitatively predict the correlation between the measures to be taken and the improvement of safety and the reduction of ship handling difficulties imposed on mariners. In this paper, the replay model for traffic flow simulation was made using marine traffic survey data, and the present traffic situation became replay in the computer. An attempt was made to rate the current safety of ports and waterways by applying the Environmental Stress model. And, as a countermeasure for traffic management, by taking of, the promotion of total traffic congestion in early morning rush hour, the correlation between traffic control rate and the reduction in ship handling difficulties imposed on mariners was predicted quantitatively.

  • PDF

Prediction of Speed in Urban Freeway Having More Freight Vehicles - Based in I-696 in Michigan -

  • Kim, Tae-Gon;Jeong, Yeon-Woo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • Generally an urban freeway means a primary arterial which provides road users with a free-flow speed, except for ramp junctions during rush hours. However, most road users suffer from traffic congestion in the basic segments as well as in the ramp junctions of urban freeway during rush hours, because most road users prefer urban freeways to local roads in the urban areas. This study then intends to analyze lane traffic characteristics of urban freeway basic segments having more freight vehicles during rush hours, find the lane showing a high correlation with the segment speed between lane speeds, and finally suggest a segment-speed predictive model by the lane speed of urban freeway basic segments during rush hours.