• 제목/요약/키워드: Prediction of Failure time

검색결과 309건 처리시간 0.027초

자이로의 신뢰성 예측모델에 관한 연구 (A Study on The Feliability Predication Model of Gyroscope)

  • 백순흠;문홍기;김호룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.475-481
    • /
    • 1993
  • The objective of this study is to develope the reliability prediction model for Float Rated Integrating Gyroscope( :FRIG) at maximum loading. The equation of motion for FRIG is firstly derived to set up the reliability prediction model. To analysis reliability or all parts of the gyro is not easy due to their complicated structure. Therefore the failure parts are chosen by Failure Mode Effective Analysis (:FMEA). F.E.M is utilized to calculate loads for the selseced rotating assembly and pivot / jewel. The technical reliability is calculated by applying reliability design theory with these results and the performance reliability is sought through distribution estimation with error test data. The bulk reliability of gyroscope is sought by applying the two results. The present prediction results are compared with the accumulation time in good agreement.

  • PDF

환경위성지상국 시스템 가용도 예측분석 연구 (A study on the availability prediction analysis for the Environmental Satellite Earth Station)

  • 은종원;최원준;이은규
    • 한국위성정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.107-112
    • /
    • 2015
  • 본 논문에서는 정지궤도 복합위성 2B에 대한 환경위성지상국 시스템의 성능지표의 하나인 가용도를 예측하기 위한 H/W 및 S/W 시스템 가용도의 수학적 모델링을 제시하고, 직렬연결 시스템에 대한 가용도 예측 방법을 제시하였다. 또한, 본 논문에서는 환경위성 지상국 시스템의 가용도 예측 결과를 산출하였으며, 그 가용도 예측 결과는 0.998072로 분석 되었다.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.

응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성 (Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability)

  • 조태준;방명석
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

현장 굴착 실험을 통한 사면붕괴 거동 연구 (A Study on behavior of Slope Failure Using Field Excavation Experiment)

  • 박성용;정희돈;김영주;김용성
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.

머신러닝을 이용한 알루미늄 전해 커패시터 고장예지 (Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors)

  • 박정현;석종훈;천강민;허장욱
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.

철근 부식속도 예측식을 이용한 철근 피복 파괴 시간 추정 (Estimation of Concrete Cover Failure Time Considering the Corrosion Rate in Reinforced Concrete Structures)

  • 장봉석
    • 콘크리트학회논문집
    • /
    • 제18권2호
    • /
    • pp.233-238
    • /
    • 2006
  • 본 연구에서는 염해환경에 노출되어 있는 철근콘크리트 구조물의 수명예측에 있어서 철근덮개 파괴시간 예측을 위하여, 유한요소해석을 통한 방법을 제시하였다. 또한 본 연구에서는 인공세공용액중의 철근 부식속도로부터 콘크리트 중의 철근 부식속도를 유도하는 방법을 제시하였으며, 철근 부식의 분포에 따른 철근덮개의 파괴시간을 비교하여, 철근덮개 파괴시간을 합리적으로 예측하기 위한 방법을 제시하였다. 국부부식을 고려한 경우 균일한 부식을 가정한 경우보다 최대 약 40%정도 철근덮개 파괴시간이 짧아짐을 알 수 있다. 따라서, 철근덮개의 파괴시간 예측을 위한 유한요소해석에 있어서 국부부식을 고려하는 것이 합리적인 결과를 제시할 수 있을 것으로 사료된다.

계측 자료의 비선형최소자승법을 이용한 파괴시간 예측 (Failure Time Prediction by Nonlinear Least Square Method with Deformation Data)

  • 윤용균;김병철;조영도
    • 터널과지하공간
    • /
    • 제19권6호
    • /
    • pp.558-566
    • /
    • 2009
  • 암석의 시간 의존적 거동은 기본적인 역학적 특성으로서 시간 의존적으로 거동을 분석하여 암반구조물의 파괴시간을 예측하는 것은 매우 중요하다. Voight가 제안한 재료 파괴 예측식($\ddot{\Omega}=A\dot{\Omega}^\alpha$, 여기서 $\Omega$는 변형률이나 변위와 같은 측정 가능한 물리량이고 A & $\alpha$는 상수이다)을 이용하여 터널, 사면 및 실내 크리프 시험으로부터 측정된 변위나 변형률로부터 파괴시간을 예측하고자 하였다. Voight식을 1차 및 2차 적분하여 구한 변위속도 및 변위식에 비선형최소자승법을 적용하여 A & $\alpha$를 구하였으며 이들 상수는 파괴시간을 예측하는데 사용되었다. 예측된 파괴시간은 실제 파괴시간과 잘 일치하는 것으로 나타났다. 크리프 변형률과 변형률속도에 선형역속도법을 적용하여 구한 예측 파괴시간은 변형률과 변형률속도를 이용하여 구한 파괴시간보다 오차가 큰 것으로 나타났다.