• Title/Summary/Keyword: Prediction of Delay Time

Search Result 227, Processing Time 0.022 seconds

Internal Model Control of UPS Inverter with Robustness of Calculation Time Delay and Parameter Variation (연산지연시간과 파라미터 변동에 강인한 UPS 인버터의 내부모델제어)

  • Park, Jee-Ho;Keh, Joong-Eup;Kim, Dong-Wan;An, Young-Joo;Park, Han-Seok;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.175-185
    • /
    • 2002
  • In this paper, a new fully digital current control method of UPS inverter, which is based on an internal model control, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The internal model controller is adopted to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. That is, the average current of filter capacitor is been exactly equal to the reference current with a time lag of two sampling intervals. Therefore, this method has an essentially overshoot free reference-to-output response with a minimum possible rise time. The effectiveness of the proposed control system has been verified by the simulation and experimental respectively. From the simulation and experimental results, the proposed system is achieved the robust characteristics to the calculation time delay and parameter variation as well as very fast dynamic performance, thus it can be effectively applied to the power supply for the critical load.

Self-Tuning PID Control of Systems with Time-Varying Delays (시변 지연시간이 존재하는 시스템의 자기동조 PID 제어)

  • 남현도;안동준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 1990
  • In this paper, we propose a self-tuning PID controller for unknown systems with time-varying delay. Using pole placement equations, we derive the controller that can be extended to the multi-step time delay case. The time-varying delays are estimated by a prediction error delay method using multiple predictors. Since the order of the estimation vector is not increased, the persistant exciting condition of control input is alleviated. Since the least square method gives biased parameter estimates for colored noise cases, the recursive instrumental variable method is used to estimate system parameters. The computational burden of the proposed method is less than the conventional adaptive methods. Computer simulations are performed to illustrate the efficiency of the proposed method.

  • PDF

User Modeling based Time-Series Analysis for Context Prediction in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경에서 컨텍스트 예측을 위한 시계열 분석 기반 사용자 모델링)

  • Choi, Young-Hwan;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.655-660
    • /
    • 2009
  • The context prediction algorithms are not suitable to provide real-time personalized service for users in context-awareness environment. The algorithms have problems like time delay in training data processing and the difficulties of implementation in real-time environment. In this paper, we propose a prediction algorithm with user modeling to shorten of processing time and to improve the prediction accuracy in the context prediction algorithm. The algorithm uses moving path of user contexts for context prediction and generates user model by time-series analysis of user's moving path. And that predicts the user context with the user model by sequence matching method. We compared our algorithms with the prediction algorithms by processing time and prediction accuracy. As the result, the prediction accuracy of our algorithm is similar to the prediction algorithms, and processing time is reduced by 40% in real time service environment.

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

Repetitive Load Prediction for Second Order Deadbeat Response Applied to UPS Inverter (UPS inverter의 2차 데드비트 응답을 위한 반복부하예측기법)

  • 최재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.339-342
    • /
    • 2000
  • Repetitive Load Prediction is proposed for the UPS inverter application of the second order deadbeat controller which is robust against the calculation time delay and the parameter variation and which gets fast response against the load variation. The proposed technique predicts the load current ahead of two sampling time using that the load current is periodic. This is effective under nonlinear load condition. The proposed technique is derived theoretically and verified through simulation and experimental result.

  • PDF

Seamless Handover with Motion Prediction in 802.16e (휴대인터넷에서 움직임 예측을 이용한 seamless handover 방법)

  • Lee, Ho-Jeong;Yun, Chan-Young;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.397-399
    • /
    • 2005
  • Handover is one of the most important factors that may degrade the performance of TCP connections and real-time applications in wireless data networks. We proposed a seamless handover with Motion Prediction in IEEE 802.16e-based broadband wireless access networks. By intergrating MAC and network layer handovers efficiently, this scheme minimizes the handover delay and eliminates packet losses during handover Simulations show that this scheme achieves loss-free packet delivery without packet duplication and increases TCP throughput significantly.

  • PDF

Model predictive control strategies for protection of structures during earthquakes

  • Xu, Long-He;Li, Zhong-Xian
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.233-243
    • /
    • 2011
  • This paper presents a theoretical study of a model predictive control (MPC) strategy employed in semi-active control system with magnetorheological (MR) dampers to reduce the responses of seismically excited structures. The MPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an objective function, which can compensate for the effect of time delay that occurred in real application. As an example, a 5-story building frame equipped with two 20 kN MR dampers is presented to demonstrate the performance of the proposed MPC scheme for addressing time delay and reducing the structural responses under different earthquakes, in which the predictive length l = 5 and the delayed time step d = 10, 20, 40, 60, 100 are considered. Comparison with passive-off, passive-on, and linear quadratic Gaussian (LQG) control strategy indicates that MPC scheme exhibits good control performance similar to the LQG control strategy, both have better control effectiveness than two passive control methods for most cases, and the MPC scheme used in semi-active control system show more effectiveness and robustness for addressing time delay and protecting structures during earthquakes.

Prediction of Principal Frequency of Ground Vibration from Delayed Blasting (지연시차에 따른 발파진동의 주파수 특성 예측)

  • Chung, Doo-Sung;Kang, Choo-Won;Ko, Jin-Seok;Chang, Ho-Min;Ryu, Pog-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • Before blasts that can have direct impacts on human bodies or structures, it is necessary to assess impacts of ground vibration. Therefore, frequency has been recognized as an important factor in order to assess impact on ground vibration and damages. There have been many studies on impacts of frequency. But, there have been no studies on relations between vibration and frequency according to delay time difference. In this study, we examined the relations between delay time difference and frequency according to each frequency with which reinforcement and destructive intervention repeat through delay time difference obtained using superposition modeling of single hole blasting waveform based on the theory of time difference developed by Langefors.

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.