• 제목/요약/키워드: Prediction of Delay Time

검색결과 227건 처리시간 0.022초

Mobility Improvement of an Internet-based Robot System Using the Position Prediction Simulator

  • Lee Kang Hee;Kim Soo Hyun;Kwak Yoon Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.29-36
    • /
    • 2005
  • With the rapid growth of the Internet, the Internet-based robot has been realized by connecting off-line robot to the Internet. However, because the Internet is often irregular and unreliable, the varying time delay in data transmission is a significant problem for the construction of the Internet-based robot system. Thus, this paper is concerned with the development of an Internet-based robot system, which is insensitive to the Internet time delay. For this purpose, the PPS (Position Prediction Simulator) is suggested and implemented on the system. The PPS consists of two parts : the robot position prediction part and the projective virtual scene part. In the robot position prediction part, the robot position is predicted for more accurate operation of the mobile robot, based on the time at which the user's command reaches the robot system. The projective virtual scene part shows the 3D visual information of a remote site, which is obtained through image processing and position prediction. For the verification of this proposed PPS, the robot was moved to follow the planned path under the various network traffic conditions. The simulation and experimental results showed that the path error of the robot motion could be reduced using the developed PPS.

네트워크 기반 실시간 제어 시스템을 위한 지연 보상기 개발 (Development of Delay Compensator for Network Based Real-time Control Systems)

  • 김승용;김홍열;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.82-85
    • /
    • 2004
  • This paper proposes the development of delay compensator to minimize performance degradation caused by time delays in network-based real-time control systems. The delay compensator uses the time-stamp method as a direct delay measuring method to measure time delays generated between network nodes. The delay compensator predicts the network time delays of next period in the views point of time delays and minimizes performance degradation from network through considering predicted time delays. Control output considering network time delays is generated by the defuzzification of probable time delays of next period. The time delays considered in the delay compensator are modeled by using a timed Petri net model. The proposed delay prediction mechanism for the delay compensator is evaluated through some simulation tests by measuring deviation of the predicted delays from simulated delays.

  • PDF

기울기백터를 이용한 카오스 시계열에 대한 예측 (The Prediction of Chaos Time Series Utilizing Inclined Vector)

  • 원석준
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.421-428
    • /
    • 2002
  • 지금까지 삽입(Embedding)백터를 이용한 국소적예측방법은 고차미분방정식으로부터 생성된 카오스 시계열을 예측할 때, 파라메타 $\tau$의 추정이 정확하지 않으면 예측성능은 떨어졌다. 지금까지 지연시간 ($\tau$)의 값을 추정하는 방법은 많이 제안되어있지만 실제로 고차원미분방정식부터 생성되어진 수많은 시계열에 모두 적용 가능한 방법은 아직 없다. 이것을 기울기 백터를 이용한 기울기 선형모델을 도입하는 것에 의해 정확한 지연시간 ($\tau$)의 값을 추정하지 않아도 예측성능에 만족할 수 있는 결과를 표시했다. 이것을 이론뿐이 아니고 경제시계열에도 적용해서 종래의 예측방법과 비교해서 그 유효성을 표시했다.

고속도로 진출입램프 접속부상의 지체예측모형 구축에 관한 연구 (Construction of Delay Predictive Models on Freeway Ramp Junctions)

  • 김정훈;김태곤
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.175-185
    • /
    • 2000
  • Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the purpose of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the rap junctions of freeway with 70mph speed limit. From the traffic analyses, and model construction and verification for delay prediction on the ramp junctions of freeway, the following results were obtained : ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junctions of freeway. ⅲ) The delay-occupancy curve showed a remarkable shift based on the occupancies observed : O$\_$d/〈9% and O$\_$d/$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under O$\_$d/$\geq$9%, but lowly for delay prediction on the ramp junctions of freeway under O$\_$d/〈9%. Rather, the driver characteristics or transportation conditions around the freeway were thought to be a little higher explanatory for the delay prediction under O$\_$d/〈9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.

  • PDF

네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템 (Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method)

  • 조현철;심광열;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

병렬구조 퍼지시스템을 이용한 태양흑점 시계열 데이터의 예측 (Prediction of Sunspot Number Time Series using the Parallel-Structure Fuzzy Systems)

  • 김민수;정찬수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권6호
    • /
    • pp.390-395
    • /
    • 2005
  • Sunspots are dark areas that grow and decay on the lowest level of the sun that is visible from the Earth. Shot-term predictions of solar activity are essential to help plan missions and to design satellites that will survive for their useful lifetimes. This paper presents a parallel-structure fuzzy system(PSFS) for prediction of sunspot number time series. The PSFS consists of a multiple number of component fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts future data independently based on its past time series data with different embedding dimension and time delay. An embedding dimension determines the number of inputs of each component fuzzy system and a time delay decides the interval of inputs of the time series. According to the embedding dimension and the time delay, the component fuzzy system takes various input-output pairs. The PSFS determines the final predicted value as an average of all the outputs of the component fuzzy systems in order to reduce error accumulation effect.

차세대 네트워크에서 상대적 지연 차별화를 위한 적응형 입력 트래픽 예측 방식 (Adaptive Input Traffic Prediction Scheme for Proportional Delay Differentiation in Next-Generation Networks)

  • 백정훈
    • 융합보안논문지
    • /
    • 제7권2호
    • /
    • pp.17-25
    • /
    • 2007
  • 본 논문에서는 차세대 패킷 네트워크에서의 서비스 품질 기능 고도화를 목적으로 상대적 지연 차별화 기능을 제공하는 알고리듬을 제시하고 시뮬레이션을 통해 성능 분석을 수행한다. 또한, 제안된 알고리듬을 XPC 860 CPU 기반의 시험 보드상에서 VHDL로 구현하여 실제 트래픽 입력 상황하에서의 성능 분석을 수행한다. 제안된 알고리듬은 매 시간 구간마다 입력되는 트래픽을 측정하고 이를 기반으로 다음 시간 구간 동안 입력될 트래픽의 양을 예측한 후 실제로 다음 시간 구간 동안에 입력된 트래픽과 비교하여 오차분을 도출하여 이를 다음 타임 슬롯의 지연 차별화 동작에 지속적으로 반영하는 것이 특징적 요소이므로 오차분을 고려하지 않는 기존 방식에 비해 버스트 트래픽에 대하여 우수한 적응성을 보여준다. 제안된 방식의 성능은 시뮬레이션과 실제 보드상에서의 시험을 통해 절대적 지연 목표를 충족시킴과 동시에 기존 방식에 비해 버스트 트래픽에 대하여 성능 개선 효과가 달성됨이 확인된다.

  • PDF

DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법 (Prediction method of node movement using Markov Chain in DTN)

  • 전일규;이강환
    • 한국정보통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.1013-1019
    • /
    • 2016
  • 본 논문에서는 Delay Tolerant Network(DTN)에서 Markov chain으로 노드의 속성 정보를 분석하여 노드의 이동경로를 예측하는 알고리즘을 제안한다. 기존 DTN에서의 예측기반 라우팅 기법은 노드가 미리 정해진 스케줄에 따라 이동하게 된다. 이러한 네트워크에서는 스케줄을 예측할 수 없는 환경에서 노드의 신뢰성이 낮아지는 문제가 있다. 본 논문에서는 이러한 문제를 극복하기 위해 노드의 속성 정보를 Markov chain을 적용하고 일정 구간에서 시간에 따른 노드의 이동 경로를 예측하는 CMCP(Context-awareness Markov-Chain Prediction)알고리즘을 제안한다. 제안하는 알고리즘은 노드의 속성 정보 중 노드의 속력과 방향성을 근사한 후 Markov chain을 이용하여 제한된 주기와 버퍼의 범위에서 확률전이 매트릭스를 생성하여 노드의 이동 경로를 예측하는 알고리즘이다. 주어진 모의실험 환경에서 노드의 이동 경로 예측을 통해 중계 노드를 선정하여 라우팅 함으로써 메시지 전송 지연 시간이 감소하고 전송률이 증가함 보여주고 있다.

시변 지연시간을 갖는 이산형 프로세스의 적응제어 (Adaptive Control for Discrete Process with Time Varying Delay)

  • 김영철;김국헌;정찬수;양흥석
    • 대한전기학회논문지
    • /
    • 제35권11호
    • /
    • pp.503-510
    • /
    • 1986
  • A new algorithm based on the concept of prediction error minimization is suggested to estimate the time varying delay in discrete processes. In spite of the existence of the stochastic noise, this algorithm can estimate time varying delay accurately. Computation time of this algorithm is far less than that of the previous extended parameter methods. With the use of this algorithm, generalized minimum variance control shows good control behavior in simulations.

  • PDF

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.